

Searches for scalar particles in top quark

topologies in ATLAS and CMS

Dr Eleanor Jones

on behalf of the ATLAS and CMS collaborations

24 September 2024

17th International Workshop on Top Quark Physics

eleanor.jones@cern.ch

Agenda Overview

Analysis results

Summary

Motivation (1)

- The SM provides an effective description of nature up to the TeV scale
 - The discovery of a Higgs-like particle in 2012 marked a major milestone for ATLAS and CMS
 - Electroweak symmetry breaking remains the simplest hypothesis

Photo: Alan Stonebraker

- However, there are many unexplained observations remaining
 - Why is the observed Higgs mass so small?
 - What is the nature of the electroweak phase transition in the early Universe?

PHYSICS

ATLAS

2011-12

√s = 7-8 TeV

Motivation (2)

- Many BSM models have been proposed to explain the observations
 - Minimal extensions to the SM are wellmotivated by theories such as supersymmetry or axion models

Standard Model VLQ U C T T d S D B

2 Higgs Doublet Models

- Simple extension that is consistent with existing constraints
- Introduces a second complex scalar doublet to the SM Lagrangian

Vector-like Quarks

- New generation of spin-¹/₂ particles
- Equal left- and right-handed couplings to the weak sector

- Introduce second complex scalar SU(2) doublet
- CP-conserving scalar potential
- \mathbb{Z}_2 symmetry

$m_A, m_H, m_{H^{\pm}}, m_{12}, \alpha$ and $\tan \beta$ are free parameters

- Introduce second complex scalar SU(2) doublet
- CP-conserving scalar potential
- \mathbb{Z}_2 symmetry

- Introduce second complex scalar SU(2) doublet ullet
- **CP-conserving scalar potential**
- \mathbb{Z}_2 symmetry

$m_A, m_H, m_{H^{\pm}}, m_{12}, \alpha$ and $\tan \beta$ are free parameters

- Introduce second complex scalar SU(2) doublet ullet
- **CP-conserving scalar potential**
- \mathbb{Z}_2 symmetry

$m_A, m_H, m_{H^{\pm}}, m_{12}, \alpha$ and $\tan \beta$ are free parameters

- Introduce second complex scalar SU(2) doublet
- CP-conserving scalar potential
- \mathbb{Z}_2 symmetry

• Type-II 2HDM in the alignment and decoupling limit

• g2HDM in the alignment limit and decoupling limit

hMSSM

• 2HDM+a

• Type-II 2HDM in the alignment and decoupling limit

Requires Z₂ symmetry Describes which fermion couples to which doublet

• g2HDM in the alignment limit and decoupling limit

hMSSM

• 2HDM+a

• Type-II 2HDM in the alignment and decoupling limit

Requires Z₂ symmetry Describes which fermion couples to which doublet

 $\cos(\beta - \alpha) = 0$ couplings of h = couplings of h_{SM}

• g2HDM in the alignment limit and decoupling limit

hMSSM

• 2HDM+a

 $h \ll \Lambda_{2HDM}$ and $\Lambda_{2HDM} \gg v$

• hMSSM

• 2HDM+a

2HDM analyses

Overview

- Strong interference between the signal and the SM $t\bar{t}$ process leads to a peak-dip structure
 - A and H do not interfere since they are orthogonal CP states
 - The peak-dip structure is strongly model dependent
- Two orthogonal channels considered:
 - Iepton+jets (1L) and dileptonic (2L)

Analysis strategy

Invariant mass spectrum of the top pair, $m_{t\bar{t}}$

- **2L**
- Invariant mass spectrum of the di-b-plus-di-lepton system, m_{llbb}
- Additionally binned in $\Delta \phi(l, l)$

4 g DODDDD

g 000000

A/H

1L

Search for $gg \to H / A \to t\bar{t}$ Results: Search stage

- Tested agreement between data and S+I+B hypotheses with $m_{A/H} \in [400, 1400]$ GeV and $\Gamma_{A/H} \in [1, 40]$ %
 - Most significant deviation from SM (2.3 σ local): $m_A = 800$ GeV, $\Gamma_A = 10\%$ and $\sqrt{\mu} = 4.0$

4 g cococo

g 0000000

A/H

ATLAS Search for $gg \to H / A \to t\bar{t}$ JHEP08(2024)013

Results: hMSSM comparison

Strongest constraints on m_A at tan $\beta = 1.0$ to date!

11

Results: 2HDM+a

a g addadd

g 000000

A/H

First dark matter interpretation of an interference search!

Strongest expected limits at high mediator mass to date!

Search for $t\bar{t}H / A \rightarrow t\bar{t}t\bar{t}$ Results: 2D limits ArXiv: 2408.17164

• Upper limits on the cross-section can be translated to constraints in the $\tan \beta - m_{A/H}$ plane

Search for $A \rightarrow ZH, H \rightarrow t\bar{t}$ Overview

- Full CMS Run 2 dataset: 138 fb⁻¹ at $\sqrt{s} = 13$ TeV
- Probed kinematic range of signal: $m_A > m_H + m_Z$
 - $A \rightarrow ZH$ becomes dominant in a wide range of 2HDM parameter space
 - For $m_A > 400 \text{ GeV}, H \rightarrow t\bar{t}$ is dominant decay
 - Above 1 TeV, interference becomes non-negligible
- Target final state: $Z \rightarrow ee/\mu\mu$ and all-jet decays of $t\bar{t}$
 - First time this final state has been considered
- Discriminating observable: 2D-distribution of Δm and p_T^Z
 - Reduced to a 1D-distribution, $p_T^Z \times \Delta m$

Mass difference of the *A* and *H* boson candidates

Transverse momentum of the *Z* boson candidate

Analysis strategy

- 6 bins corresponding to 6 quantiles of the $p_T^Z \times \Delta m$ distribution in each of 20 regions :
 - binning is optimised for each signal hypothesis

 Simultaneous binned profile likelihood fit in all channels and categories

CMS

CMS-PAS-B2G-23-006

• Separate fits for each (m_A, m_H) hypothesis

Search for $A \rightarrow ZH, H \rightarrow t\bar{t}$ CMS-PAS-B2G-23-006 **Results: SR fits**

- Post-fit background normalisation parameters are consistent for all tested hypotheses
 - 0.82 0.94 with uncertainties of ~ 0.1 for $t\bar{t}$
 - 0.81 0.97 with uncertainties of ~0.14 for $Z/\gamma + jets$

- No significant signal excess
- Largest fluctuation (2.1σ) observed for: $m_A = 1000 \text{ GeV}$ and $m_H = 850 \text{ GeV}$

CMS

Search for $A \rightarrow ZH, H \rightarrow t\bar{t}$

Results: 2D limits

- Interpreted in the context of type-II 2HDM
 - Interpretation is limited to the 2HDM parameter space where $\Gamma_{\!A} < 25\%$

- Exclude, depending on the value of $\tan \beta$:
 - *m*_A between 550 − 1500 GeV
 - m_H between 350 700 GeV

CMS

Search for $pp \rightarrow tH / A \rightarrow tt\bar{q}$

Overview

 $ho_{\mathrm{tq}'}$

H/A

Phys. Lett. B 850 (2024) 138478

CMS

- First search based on g2HDM model considering A-H interference
 - 2023 <u>ATLAS analysis</u> has similar limits for the non-interference case
- Mass difference of $m_A m_H = 50$ GeV assumed
- Full CMS Run 2 dataset: 138 fb⁻¹ at $\sqrt{s} = 13$ TeV
- Probed mass range of new Higgs bosons: 200 1000 GeV
- Probed range of new Yukawa couplings, ρ_{tu} and ρ_{tc} : 0.1 1.0
- Final state signature: two same-sign leptons with at least three jets
- Dominant background: events with non-prompt leptons

Estimated using fake factor method

If $m_A - m_H \gtrsim 100$ GeV, effectively no interference

All other new Yukawa couplings assumed to be 0

Search for $pp \rightarrow tH / A \rightarrow tt\bar{q}$

CMS

 10^{6}

10⁵

10⁴

 10^{3}

10²

10

-0.6

VBS [114]

Nonprompt [2648]

Interference

g2HDM Signal(x2.5)

 $m_{\Delta} - m_{H} = 50 \text{ GeV}$

tt [408]

-0.4

-0.2

0

Signal extraction

- BDT discriminant used to distinguish ۲ signal and background
- 152 BDTs trained in total: •

 $ho_{\mathrm{tq}'}$,

pagagagag

H/A

- independently for four data-taking periods
- in each data-taking period, independently for each mass assumption of m_A
- dx 1.1 1 00 0.9 for each mass assumption, independently for $\rho_{tu} = 0.4 \text{ and } \rho_{tc} = 0.4$
- Signal strength, μ , extracted with a simultaneous maximum ٠ likelihood fit for each signal mass-coupling assumption independently in 12 categories:
 - 3 decay modes in the 4 data-taking periods

CMS

Phys. Lett. B 850 (2024) 138478

Search for $pp \rightarrow tH / A \rightarrow tt\bar{q}$ **Results: 1D limits** Phys. Lett. B 850 (2024) 138478

- No significant excess over the expected SM background
 - interpreted as upper limits on μ as a function of m_A

 $ho_{
m to}$

H/A

 $ho_{\mathrm{tq}'}$

q

ananananan

CMS

Search for $pp \rightarrow tH / A \rightarrow tt\bar{q}$ Phys. Lett. B 850 (2024) 138478 **Results: 2D limits**

No significant excess over the expected SM background

 $ho_{
m to}$

H/A

 $ho_{\mathrm{tq}'}$

• interpreted as upper limits on μ as a function of m_A and ρ_{tu} / ρ_{tc}

CMS

VLQs

- Color-triplet, spin-¹/₂ fermions
- Left- and right-handed chiral components transform identically under the weak-isospin gauge group
- Can be <u>singly-</u> or doubly- produced

VLQ		(<i>B</i>)	(T) (B)		$\begin{pmatrix} B \\ Y \end{pmatrix}$	$\begin{pmatrix} X \\ T \\ B \end{pmatrix}$	$\begin{pmatrix} T\\B\\Y \end{pmatrix}$
Isospin	0	0	1/2	1/2	1/2	1	1
Hypercharge	+2/3	-1/3	+1/6	+7/6	-5/6	+2/3	-1/3

- Could mix with like-charge SM quarks
 - 7 renormalizable possibilities generate Yukawa terms without changing the scalar sector

- Couple to SM quarks via exchange of W^{\pm} , Z or H with electroweak couplings, κ , $\tilde{\kappa}$ and $\hat{\kappa}$
- VLQs couple preferentially to third-generation SM quarks
 - other couplings set to 0
 - no additional mediators

VLQs

T quark decays

- T SU(2) singlet:
 - 50% to *Wb*, 25% to *Zt* and 25% to *Ht*
- T SU(2) doublet:
 - 50% to Zt and 50% to Ht

VLQ analyses

Combination of searches for singly-produced VLQs Overview

- Combination of 3 orthogonal analyses, targeting different leptonic (e or μ) final states
 - `MonoTop`: 0 leptons (<u>JHEP 05 (2024) 263</u>)
 - `HTZT`: 1 lepton (<u>Phys. Rev. D (2024) 109 112012</u>)
 - `OSML`: ≥ 2 leptons (<u>JHEP 08 (2023) 153</u>)
- Full ATLAS Run 2 dataset: 139 fb⁻¹ at $\sqrt{s} = 13$ TeV
- Combination performed considering correlations in the background modelling and systematic uncertainties
- First combination of searches single *T*-quark production in ATLAS
 - Most restrictive bounds to date!

Combination of searches for singly-produced VLQs Results: $\kappa = 0.3$

- No significant excess over the expected SM background
 - most significant local p_0 -value of 0.14(0.10) for the SU(2) singlet (doublet) interpretation at $m_T = 2.1$ TeV, $\kappa = 0.1$

 Combination improves the limits over the individual results for all masses and couplings by up to a 2x!

Combination of searches for singly-produced VLQs Results: *T* SU(2) singlet

- Combination increases sensitivity to a wider range of model parameters beyond existing parameters
 - Also interpreted as exclusion limits on the total cross section as a function of m_T and κ

Combination of searches for singly-produced VLQs Overview

- Combination of 3 orthogonal analyses, targeting different final states
 - ZTvv: 2 neutrinos (JHEP 05 (2022) 093)
 - `HTγγ`: 2 photons (<u>JHEP 09 (2023) 057</u>)
 - `HTZT`: all-hadronic (<u>arXiv:2405.05071</u>)
- Full CMS Run 2 dataset: 138 fb⁻¹ at $\sqrt{s} = 13$ TeV
- Combination performed considering correlations in the background modelling and systematic uncertainties

Combination of searches for singly-produced VLQs

arXiv:2405.17605

Results: Upper limits

• Combination significantly improves limits compared to a single analysis

Combination of searches for singly-produced VLQs Results: *T* SU(2) singlet

- Also interpreted as exclusion limits on κ
 - Couplings κ > 0.4 excluded at 95% confidence level across entire m_T
 - For $m_T = 600$ GeV, $\kappa > 0.15$ excluded

29

Summary

- Presented an overview of recent ATLAS and CMS results in the context of $t\bar{t}$ final states
- Explored 2HDM models and VLQ models
- Currently no significant excesses have been observed, but stringent limits have been set
- An exciting search program for Run 3 awaits...

Thank You

Dr Eleanor Jones eleanor.jones@cern.ch

Backup

Event selection: 1L

Standard run and event cleaning Single-lepton trigger (*e* or μ) Exactly 1 lepton with $p_T > 25$ GeV (orthogonality with 2L) Selected lepton $p_T > 28 \text{ GeV}$ (trigger) $E_T^{miss} > 20 \text{ GeV}$ • $E_T^{miss} + m_T^W > 60 \text{ GeV}$ \geq 1 *b*-tagged jet (DL1r 77%) Total of 11 Resolved orthogonal Merged \geq 4 jets with $p_T > 25 \text{ GeV}$ signal regions \geq 1 VRC jet with $p_T > 300$ GeV and m $\log_{10} \chi^2 < 0.9$ > 100 GeVVeto on events passing boosted $\Delta R(l, b_l) < 2.0$ selection $\Delta R(l, t_h) > 1.5$ Split into 1 *b*-tag and 2 *b*-tag $\Delta R(b_l, t_h) > 1.5$ categories Split into equal bins of $|\cos \theta^*|$

Event selection: 2L

- Standard run and event cleaning
- Single-lepton trigger ($e \text{ or } \mu$)
- == 2 leptons (*ee*, $\mu\mu$, $e\mu$) with $p_T > 25$ GeV (orthogonality with 1L)
 - Leading one: $p_T > 28 \text{ GeV}$ (trigger)
- $\geq 2 \text{ small-}R \text{ jets and } \geq 1 \text{ b-tagged jet (DL1r 77%)}$
- $m_{\ell\ell} > 15 \text{ GeV}$ for $ee \text{ and } \mu\mu$

Total of 5 orthogonal signal regions

- Opposite sign lepton pair
- *Z*-veto for *ee* and $\mu\mu$
 - $E_T^{miss} > 45 \text{ GeV}, m_{\ell\ell} < 81 \text{ GeV}$ or $m_{\ell\ell} < 101 \text{ GeV}$
- Lepton-*b*-jet compatibility
 - $m_{l^+b} < 150 \text{ GeV}, m_{l^-b} < 150 \text{ GeV}$ for $\geq 1 b$ -jet assignment

- $m_{\ell\ell bb}$ is the discriminating variable
 - If ≥ 2 *b*-jets: use the 2 leading *b*-jets
 - If == 2 b-jet: use the b-jet + the leading non-b-jet
- Additionally binned in $\Delta \phi_{\ell \ell}$

Overview: "model-independent"

• Can also extend the SM with generic (pseudo)scalars with terms:

$$\mathcal{L}_{H} = -g_{Ht\bar{t}} \frac{m_{t}}{v} t\bar{t}H, \\ \mathcal{L}_{A} = ig_{At\bar{t}} \frac{m_{t}}{v} \bar{t}\gamma^{5} tA$$

- Very few assumptions so can derive model-agnostic constraints
- $A / Ht\bar{t}$ coupling and $A / H \rightarrow t\bar{t}$ decay width vary independently
- The peak-dip structure is still strongly model dependent
 - Higher coupling does not always mean bigger deviation from SM (unlike resonances)

Statistical analysis overview

• Binned profile likelihood fit parametrised in $\sqrt{\mu}$:

 $\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$

- $\sqrt{\mu}$ is equivalent to the coupling, g
 - The interference shape depends on $\sqrt{\mu}$

- Upper limit on $\sqrt{\mu}$ is not always well-defined
 - Double minima can appear in the likelihood scan

Choice of test statistic

• Different test statistics are used for the search and exclusion stages:

Search stage
$$q_{\sqrt{\mu}} = \frac{\mathcal{L}\left(\sqrt{\mu}, \hat{\theta}_{\sqrt{\mu}}\right)}{\mathcal{L}\left(\sqrt{\mu}, \hat{\theta}_{\sqrt{\mu}}\right)}$$

Should we reject the SM in favour of

(any) BSM hypothesis?

- Test agreement of data with a range of interference patterns
- Consider all possible values of $\sqrt{\mu}$

Exclusion stage

$$q_{1,0} = -2\ln\frac{\mathcal{L}\left(1,\hat{\hat{\theta}}_{1}\right)}{\mathcal{L}\left(0,\hat{\hat{\theta}}_{0}\right)}$$

Should we reject the BSM hypothesis under consideration?

 Test (dis)agreement of data with specific interference pattern of tested signal hypothesis

Results: "model-independent"

36

Full details in Quake Qin's <u>talk</u>

Search for $t\bar{t}H / A \rightarrow t\bar{t}t\bar{t}$ Overview $\underbrace{\text{ArXiv: 2408.17164}}_{\text{arXiv: 2408.17164}}$

- Full ATLAS Run 2 dataset: 139 fb⁻¹ at $\sqrt{s} = 13$ TeV
 - Combination with previous 2 lepton same-sign and multilepton result
- Probed mass range of signal: $400 < m_{H/A} < 1000 \text{ GeV}$
 - Large $H / A \rightarrow t\bar{t}$ branching fraction
 - Above 1 TeV, interference becomes non-negligible
- Target final states: = 1 lepton or = 2 opposite-sign leptons
 - Main background: $t\bar{t} + jets$

000000000

H/A

• Simultaneous profile likelihood fit to H_T distributions in the CRs and GNN output distributions in the SRs

Leptons = e or μ

(including from τ decays)

Full details in Quake Qin's <u>talk</u>

Search for $t\bar{t}H / A \rightarrow t\bar{t}t\bar{t}$ Results: 1D limits $A \rightarrow t\bar{t}t\bar{t}$ $A \rightarrow t\bar{t}t\bar{t}$

- No significant excess above the SM prediction is observed under the S+B hypothesis
- Results are interpreted in the context of a type-II 2HDM model, assuming no interference
 - Combination results with the <u>previous 2LSS/ML</u> shown here.

Analysis strategy

- 20 analysis regions in total:
 - 10 per lepton-flavour channel, of which 2 SRs and 3 CRs per jet multiplicity

• Selection efficiency for signal events:

• above 99% in the $\mu\mu$ channel across (m_A, m_H) plane

CMS

CMS-PAS-B2G-23-006

- above 99% in the *ee* channel for $m_H > 300 \text{ GeV}$
- above 97% in the *ee* channel for $m_H < 300 \text{ GeV}$

- Signal selection efficiency in all SRs is between 3 – 13%
- CRs constrain the dominant $t\bar{t}$ and Drell-Yan backgrounds

Search for $A \rightarrow ZH, H \rightarrow t\bar{t}$

Event selection

٠

- `OR` combination of triggers:
 - di-muon, di-electron, single-lepton, single- or di-photon
- == 2 leptons (ee or $\mu\mu$) with $|\eta| < 2.4$ and $p_T > 35(20)$ GeV for leading (sub-leading)
- \geq 5 anti- k_T , R = 0.4 jets with $|\eta| < 2.4$ and $p_T > 30$ GeV
- $m_{\ell\ell} > 30 \text{ GeV}$ and $p_T(\ell \ell) > 15 \text{ GeV}$ •

Total of 20 orthogonal regions: 8 signal regions 12 control regions

Reconstruction

- m_H is reconstructed as the invariant mass of the $t\bar{t}$ system:
 - if there are 5 or 6 jets, $m_{t\bar{t}}$ is computed as the invariant mass of the jets
 - if there are ≥ 6 , the six jets are chosen as the $t\bar{t}$ decay products that minimise a χ^2 function under the $t\bar{t} \rightarrow b\bar{b}q\bar{q}q\bar{q}$ hypothesis
- m_A is reconstructed as the invariant mass of the $t\bar{t}Z$ system:
 - $m_{t\bar{t}}$ is computed as the invariant mass of the selected jets
 - m_Z is computed as the invariant mass of the two leptons
- Two observables of interest:
 - difference between the Breit-Wigner peaks $\Delta m = m_{t\bar{t}Z} m_{t\bar{t}} \approx m_A m_H$
 - $p_T(\ell \ell) \approx p_T^Z$ spectrum, which has a characteristic shape with a kinematic edge
- Final discriminant: $p_T^Z \times \Delta m$
 - reduced to 1D-distribution using concentric elliptical bins in the $(p_T^Z, \Delta m)$ plane
 - angles and proportions of axes obtained by diagonalising the covariance matrix of p_T^Z and Δm , assuming normal distributions
 - In the SR, the ellipses are centred around the mean of the signal distribution and chosen specifically for each tested hypothesis
 - In the CR, the ellipses are centred around the mean of the total expected background distribution, so the same for each hypothesis

Model independent limits

- Model independent limits on $\sigma(pp \to A \to ZH) \times \mathcal{B}(H \to t\bar{t})$ of generic Higgs-like narrow resonances
- Results do not confirm previous 2.85σ excess reported by ATLAS in the region around $(m_A, m_H) = (650, 450)$ GeV
 - Local significance here is 0.4σ
- Exclude $A \rightarrow ZH \rightarrow Zt\bar{t}$ signal with a cross section > 0.25 pb at 95% CL

2HDM limits

- Limits interpreted in the context of a type-II 2HDM in the:
 - $(\tan\beta, m_A)$ parameter space at $m_H = 400 \text{ GeV}$
 - $(\tan\beta, \cos(\beta \alpha))$ parameter space at $m_A = 600$ GeV and $m_H = 400$ GeV

Search for $pp \rightarrow tH / A \rightarrow tt\bar{q}$

Event selection

- Combination of di-lepton and single-lepton triggers
- Exactly 2 same-sign leptons (*ee*, $\mu\mu$, $e\mu$) with $p_T > 30$ (20) GeV for the leading (sub-leading) lepton
- \geq 30 anti- k_T , R = 0.4 jets with $|\eta| < 2.4$ and $p_T > 30$ GeV
- $p_T^{miss} > 30 \text{ GeV}$
- $\Delta R(\ell_1, \ell_2) > 0.3$
- + $m_{\ell\ell} > 20 \text{ GeV}$ and not $60 < m_{\ell\ell} < 120 \text{ GeV}$ for ee
- BDT score > 0.6

 Different flavour jets distinguished through ratios of corresponding jet flavour probabilities obtained from DEEPJET

Search for $pp \rightarrow tH / A \rightarrow tt\bar{q}$

BDT

Input variables of the BDT

$\operatorname{CvsL}(j_a)$	a = 1, 2, 3	Charm- vs light-quark jet identification variable
$CvsB(j_a)$	a = 1, 2, 3	Charm- vs bottom-quark jet identification variable
$\Delta R(j_a, j_b)$	$1 \le a < b \le 3$	Angular separation between jets
$m(j_a, j_b)$	$1 \le a < b \le 3$	Invariant mass of jet pairs
$\Delta R(j_a, l_b)$	a = 1, 2, 3; b = 1, 2	Angular separation between jet and lepton
$m(j_a, l_b)$	a = 1, 2, 3; b = 1, 2	Invariant mass of jet-lepton pairs
$p_{\mathrm{T}}(\ell_a)$	a = 1, 2	Transverse momentum of leptons
$m(\ell_1, \ell_2, j_a)$	a = 1, 2, 3	Invariant mass of the two leptons plus the highest $p_{\rm T}$ jet
$m(\ell_1,\ell_2)$		Invariant mass of the two leptons
H_{T}		Scalar $p_{\rm T}$ sum of the jets
$p_{\mathrm{T}}^{\mathrm{miss}}$		Missing transverse momentum

- Half of the available simulated events used for training
- Backgrounds added according to their cross sections: ttc, ttu, semi- and di-leptonic tt, ttV, VV, VVV, ttH, ttVH, tttj, ttW, tttt and VBS
 - 3 values of couplings used for ρ_{tu} and ρ_{tc} : 0.1, 0.4 and 1.0
 - For each coupling value, 10 values of *m*_A: 200, 300, 350, 400, 500, 600, 700, 800, 900, 1000 GeV
 - For each coupling value, also consider the more realistic case with A H interference assuming a fixed mass difference of 50 GeV, with 9 $m_A m_H$ combinations: 250 200, 300 250, 350 300, 400 350, 550 500, 700 650, 800 750, 900 850, 1000 950 GeV

Search for $pp \to tH / A \to tt\bar{q}$

Results without interference

 $\underbrace{\textit{Search for } pp \to tH \ / \ A \to tt \overline{q}}_{\text{Results summary}}$

Observed (expected) mass limit [GeV]					
	without	with	with		
	interference	interference	interference		
	$m_{\rm A}$ or $m_{\rm H}$	m_{A}	$m_{ m H}$		
$ ho_{ m tu}$					
0.4	920 (920)	1000 (1000)	950 (950)		
1.0	1000 (1000)	1000 (1000)	950 (950)		
$ ho_{ m tc}$					
0.4	no limit	340 (370)	290 (320)		
1.0	770 (680)	810 (670)	760 (620)		

ATLAS g2HDM analysis

- Considered also $\rho_{tt} \neq 0$
 - Limits only when $\rho_{tc} = \rho_{tu} = 0.2$

 $\rho_{tu} = 0.2$

JHEP 12 (2023) 081

 $\rho_{tt} / \sum_{i} \rho_{ti} = 1$

No *A*-*H* interference considered

 $\rho_{tu} / \sum_i \rho_{ti} = 1$

ATLAS

Normalised to the sum of the couplings

- Exclusion limits set for different choices of couplings For $\rho_{tt} = 0$, $\rho_{tc} = 0.2$ and
- $\rho_{tu} = 0.2$:
 - Observed (expected) limit for *m_H* of 200-320 (200-560) GeV

Dbserved significance [σ]

2.5

1.5

0.5

 $\rho_{tc} / \sum_{i} \rho_{ti} = 1$

Combination of searches for singly-produced VLQs Input searches

Analysis	Target signal	Decay channels	Discriminants
	$\frac{U}{Wh/Zt \to T \to Zt}$	$Zt \rightarrow yy haa (0\ell)$	BDT score
НтΖт	$Wb/Zt \rightarrow T \rightarrow Ht/Zt$	$Ht/Zt \rightarrow bbb\ell v/qqb\ell v (1\ell)$	$m_{\rm eff}$
Osml	$Wb/Zt \to T \to Zt$	$Zt \rightarrow \ell\ell b\ell \nu (3\ell), Zt \rightarrow \ell\ell bqq (2\ell)$	Z boson $p_{\rm T}$

<u>MonoTop</u>

- Boosted hadronicallydecaying top quark
- Large missing p_T
- 1 forward (2.5 < $|\eta|$ < 4.5) anti- k_T , R = 0.4 jets
- Discriminating variable: BDT output score

HTZT

- Single lepton
- Multiple anti- k_T , R = 0.4 jets and *b*-tagged jets
- 1 forward $(2.5 < |\eta| < 4.5)$ anti- k_T , R = 0.4 jets
- Discriminating variable: scalar sum of p_T of all central jets, leptons and E_T^{miss} , m_{eff}

<u>OSML</u>

- Pair of leptons with opposite charge
- Multiple anti- k_T , R = 0.4 b-tagged jets
- 1 forward $(2.5 < |\eta| < 4.5)$ anti- k_T , R = 0.4 jets
- Discriminating variable: p_T^Z

Combination of searches for singly-produced VLQs Uncertainties

Category	Monotop	НтΖт	OSML	Correlating	
Lepton and $E_{\rm T}^{\rm miss}$ uncertainties					
Electron uncertainties		\checkmark	\checkmark	All	
Muon uncertainties		\checkmark	\checkmark	All	
$E_{\rm T}^{\rm miss}$ uncertainties	\checkmark	\checkmark	\checkmark	All	
`	Jet un	certainties	•		
JES uncertainties	\checkmark	\checkmark	\checkmark	All	
JER uncertainties	\checkmark	\checkmark	\checkmark	HTZT and Osml	
JMS uncertainties		\checkmark		None	
JMR uncertainties	\checkmark	\checkmark		None	
Tagging uncertainties					
Flavor-tagging uncertainties	\checkmark	\checkmark	\checkmark	MONOTOP and OSML	
Top-tagging uncertainties	\checkmark			None	
W/Z-tagging uncertainties	\checkmark			None	
Background modeling uncer-	\checkmark	\checkmark	\checkmark	None	
tainties (constrained)					
Background normalization factors (unconstrained)					
$t\bar{t}$ normalization	\checkmark			None	
V+jets normalization	\checkmark			None	
Z+light-jets normalization			\checkmark	None	
Z+heavy-flavor normalization			\checkmark	None	
$t\bar{t}V$ normalization			\checkmark	None	
VV normalization			\checkmark	None	

Combination of searches for singly-produced VLQs Limits: $\kappa = 0.5$

- Limits are calculated for the sum of the production cross sections times branching ratio of the four production and decay modes considered
- Comparing the obtained cross section limits with the theoretical cross section, limits are derived on m_T and κ
 - signal efficiencies for the considered models are generally different, so limits are independently determined for combinations of m_T , κ and branching ratios

Combination of searches for singly-produced VLQs Excluded regions

- Limits are computed for a finite number of points in the $m_T \kappa$ plane
 - interpolated using a piecewise function between the measured points to obtain a continuous shape in the exclusion contours

Combination of searches for singly-produced VLQs Limits in mass plane

- Limits can be generalised for arbitrary values of ξ_W
- Relative width of T, Γ_T/m_T , is completely determined by m_T and κ

Representation	$\Gamma_{ m T}/m_{ m T}$ [%]	Obs./Exp. mass limit [TeV]
SU(2) singlet ($\xi_W = 0.5$)	20	2.0 / 2.0
SU(2) singlet ($\xi_W = 0.5$)	50	2.1 / 2.1
SU(2) doublet ($\xi_W = 0.0$)	20	1.4 / 1.4
SU(2) doublet ($\xi_W = 0.0$)	50	1.6 / 1.7

- Largest excluded mass is 2.1 TeV for large Γ_T/m_T and $\xi_W = 0.5$
 - equivalent to SU(2) representation with a branching ratio to Wb of 50%

Combination of searches for singly-produced VLQs Results: T SU(2) doublet

• Also interpreted as exclusion limits on the total cross section as a function of m_T and κ

Exclude $m_T < 1.7$ TeV for $\kappa \sim 0.7$

Combination of searches for singly-produced VLQs Results: Different widths

• Also interpreted as exclusion limits on the total cross section as a function of m_T and Γ/m_T

