Top of the ALPS Precise tests of the axion coupling to tops

Anh Vu Phan (Vu), Susanne Westhoff, based on JHEP 05 (2024) 075 TOP2024, 24 September 2024

AXION-LIKE PARTICLE (ALP)

ALP EFFECTIVE THEORY

AXION-LIKE PARTICLE (ALP)

New

TOP-INDUCED EFFECTIVE COUPLINGS

• Tops can induce other couplings via loop corrections

<u>↓</u>Energy

HOW TO FIND ALPS? In meson decays

 \mathbf{I}

d, s

a

 $B_s \rightarrow \mu^+ \mu^-$

 $K \rightarrow \pi + inv$

 $B \rightarrow K + inv$

Long-lived ALPs

 \mathcal{U}

s, b

Bauer et al. (2021) [2110.10698]

Rygaard et al. (2023) [2306.08686]

In top observables

virtual corrections

 $pp \rightarrow t\bar{t}$ t t t

 $pp \rightarrow t\bar{t}t\bar{t}$ $g \bigcirc 000000$ $g \bigcirc 000000$

 $\overline{\mathbf{m}}$

AVP, Westhoff (2023) [2312.00872] Esser et al. (2024) [2404.08062] Blasi et al. (2023) [2311.16048] Bruggisser et al. (2023) [2308.11703] Biekoetter et al. (2023) [2307.10372]

resonance ALPs

a

Anuar et al. (2024) [2404.19014]

~10 GeV

 $2m_t = 345 \text{ GeV}$

| 7

 m_a

AVP, Westhoff (2023) [2312.00872]

ALPS IN $t\bar{t}$ **PRODUCTION**

Tree-level

Real ALP radiation

LEADING CONTRIBUTIONS

 $c_{GG}(\Lambda)=0$; $m_a=10~{
m GeV}$

Data: *PRD 104* (2021) 092013 *AVP*, *Westhoff* (2023) [2312.00872] ALP theory uncertainty: 10%

BOUNDS ON c_{tt} **AND** c_{GG}

AVP, Westhoff (2023) [2312.00872]

$$m_a = 10 \; {
m GeV}, \ c_{GG}, c_{tt} \; {
m vary}$$

Conclusions

- Among the SM fermions, **top is most sensitive to ALPs**.
- Top **induces all other ALP couplings** \Rightarrow rich phenomenology.
- Inclusive $t\bar{t}$ measurements give mass-independent bound on ALP-top coupling.

Thank you for listening!

BACKUP SLIDES

 $c_{GG}(\Lambda)$ **DEPENDENCE**

$$\frac{c_{tt}(\Lambda)}{f_a} = 20 \text{ TeV}^{-1} \text{ ; } m_a = 10 \text{ GeV}$$

RESULTS **ALP MASS DEPENDENCE**

 $c_{tt}(\Lambda)$ $= 20 \text{ TeV}^{-1}$; $c_{GG}(\Lambda) = 0$ Ja

Data: PRD 104 (2021) 092013 ALP uncertainty: 10%

$$\int \frac{c_{tt}(\Lambda)}{f_a} = 20 \text{ TeV}^{-1}$$
; $c_{GG}(\Lambda) = 0$; $m_a = 10 \text{ GeV}$

ALPS IN MESON DECAYS

Bauer et al. (2021) [2110.10698]

ALPS LIFETIME Rygaard et al. (2023) [2306.08686]

$$c_{GG}(\Lambda) = 0, c_{ff \neq tt}(\Lambda) = 0$$

ALPS LIFETIME Rygaard et al. (2023) [2306.08686]

$$c_{GG}(\Lambda) = 0, c_{ff \neq tt}(\Lambda) = 0$$

ALPS IN *hhZ* (projection) Esser et al. (2024) [2404.08062] Axion-Top coupling constraints Indirect ZZ Indirect $Z\gamma$ 10^{-1} Indirect γ ATLAST Same as our result 10^{-2} Indirect hhZ (projection) $\int \frac{10^{-3}}{10^{-4}} \frac{10^{-3}}{10^{-5}}$ ATLAS tīa search 10^{-3} Kaon decays g \mathbf{u} h a $\sim Z$ **B** decays g uuh 10^{-6} 10^{-7} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} m_a [GeV] 29

