Quantum observables for New Physics Eleni Vryonidou

erc

TOP2024, Saint Malo 23/9/24

MANCHESTER 1824

Introduction

Big interest in the theory community in the past 3-4 years **Measurement of entanglement in top pair production: Thursday afternoon session!**

Why is this interesting? Quantum mechanics at the TeV scale!

What can we learn in particle physics using QM/QI? New insights and information about new physics

Spin density matrix

Quantum tomography is measurement of 15 parameters: 6 polarisations and 9 correlations

Eleni Vryonidou

$$\mathcal{Q}_{ij}^{[i_1 i_2]}(m_{t\bar{t}}, \theta) = \frac{9/\alpha_a \alpha_b \int \cos \theta_{ai} \cos \theta_{bj} |\mathcal{M}_{i_1 i_2 \to t \, \bar{t} \to a \, b \, X}|^2 d\pi}{\int |\mathcal{M}_{i_1 \, i_2 \to t \, \bar{t} \to a \, b \, X}|^2 d\pi}$$

Spin correlation coefficients are averages of angles

Top2024, 23/9/24

From spin correlations to entanglement

 $D_{\min} \equiv \min\{D^{(1)}, D^{(k)}, D^{(r)}, D^{(n)}\}$

$$\hat{k} = \text{top direction}, \quad \hat{r} = \frac{\hat{p} - \hat{k} \cos \theta}{\sin \theta}, \quad \hat{n} = \frac{\hat{p} \times \hat{k}}{\sin \theta} \qquad D_{\min} < -\frac{1}{3} \qquad \text{for a proof see arXiv:2003.0}$$

$$D^{(1)} = \frac{1}{3}(+C_{kk} + C_{rr} + C_{nn}),$$

$$D^{(k)} = \frac{1}{3}(+C_{kk} - C_{rr} - C_{nn}),$$

$$D^{(r)} = \frac{1}{3}(-C_{kk} + C_{rr} - C_{nn}),$$

$$D^{(n)} = \frac{1}{3}(-C_{kk} - C_{rr} + C_{nn}).$$

Necessary and sufficient condition f

$$C = \frac{1}{2}\max(0, -1 - 3D_{\min}) > 0$$

Entanglement markers, from the Peres-Horodecki criterion

for entanglement

When are tops entangled?

Consider top pair production in pp collisions Which spin states can be reached?

Threshold:

- entangled singlet state
- from same helicity gluons

 $C_{\rm kk}$

 $0^{C_{nn}}$

-1

-1

- Boosted:
- entangled triplet state
- for qqbar pairs and opposite helicity gluons

Entanglement in the SM

Concurrence: $C = \frac{1}{2} \max \left(0, -1 - 3D_{\min} \right)$

White regions: no entanglement (C<0)

Maximal entanglement regions

- At threshold: $\beta^2=0, orall heta$
- High-Energy: $\beta^2 \to 1, \cos \theta = 0$

C. Severi, C. Boschi, F. Maltoni, M. Sioli : 2110.10112

Tops in lepton colliders

$$1/3 \operatorname{Tr} [\mathcal{C}] = D^{(1)} = + \frac{1}{3},$$

Spin-1 exchange Spin triplet state

Eleni Vryonidou

 $C_{\rm rr}$

reachable entangled states

C. Severi, F.Maltoni, S. Tentori, EV: 2404.08049

Top2024, 23/9/24

 $^{-1}$

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

- Spin Triplet state $D^{(1)} = +1/3$
- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

- Entanglement through $D^{(n)}$ for lepton colliders
- Entanglement through $D^{(1)}$ for LHC at threshold
- Entanglement through $D^{(n)}$ for LHC at high transverse momentum

Using QI for new physics

First quantum observable measurements are here Can they tell us anything interesting/new?

- o SMEFT
- Resonances

Top2024, 23/9/24

Effective Field Theory

Energy **UV physics (heavy particles)** $\mathcal{L}_{NP}(\phi, Z', X, Q, S...)$ new **t Effective Field Theory** $\mathcal{L}_{SM}(\phi) + \mathcal{L}_{dim6}(\phi) + \dots$ **Standard Model** $\mathcal{L}_{SM}(\phi)$

low energy.

Effective Field Theory reveals high energy physics through precise measurements at

Top2024, 23/9/24

SMEFT basics BSM?

59(3045) operators at dim-6:

dim-6: 59 operators

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu \nu} W^{I \mu \nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

New Interactions of SM particles

Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653 Grzadkowski et al arXiv:1008.4884

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating			
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$		
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$		
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$		
$Q_{lequ}^{(3)}$	$(\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^\alpha)^T C u_r^\beta\right]\left[(u_s^\gamma)^T C e_t\right]$		

Top2024, 23/9/24

EFT in top pair production

SM

000000

4-fermion operators

$$\begin{split} &O^{1,8}_{Qq} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i}) & O^{1,1}_{Qq} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}_{i}\gamma^{\mu}q_{i}) \\ &O^{3,8}_{Qq} = (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i}) & O^{3,1}_{Qq} = (\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i}) \\ &O^{8}_{tu} = (\bar{t}\gamma_{\mu}T^{A}t)(\bar{u}_{i}\gamma^{\mu}T^{A}u_{i}) & O^{1}_{tu} = (\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i}) \\ &O^{8}_{td} = (\bar{t}\gamma^{\mu}T^{A}t)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i}) & O^{1}_{td} = (\bar{t}\gamma^{\mu}t)(\bar{d}_{i}\gamma_{\mu}d_{i}) ; \\ &O^{8}_{Qu} = (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{u}_{i}\gamma_{\mu}T^{A}u_{i}) & O^{1}_{Qu} = (\bar{Q}\gamma^{\mu}Q)(\bar{u}_{i}\gamma_{\mu}u_{i}) \\ &O^{8}_{Qd} = (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i}) & O^{1}_{Qd} = (\bar{Q}\gamma^{\mu}Q)(\bar{d}_{i}\gamma_{\mu}d_{i}) \\ &O^{8}_{tq} = (\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})(\bar{t}\gamma_{\mu}T^{A}t) & O^{1}_{tq} = (\bar{q}_{i}\gamma^{\mu}q_{i})(\bar{t}\gamma_{\mu}t) ; \end{split}$$

Octets

Different chiralities and colour structures Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743 Top2024, 23/9/24

Eleni Vryonidou

 $ig_{S}\left(ar{Q} au^{\mu
u}\,T_{A}\,t
ight) ilde{arphi}\,G^{A}_{\mu
u}$ \mathcal{O}_{tG}

Chromomagnetic dipole operator

Singlets

SMEFT in top pair production

Eleni Vryonidou

 $ig_{S}\left(ar{Q} au^{\mu
u}T_{A}\,t
ight) ilde{arphi}\,G^{A}_{\mu
u}$ \mathcal{O}_{tG} Chromomagnetic dipole operator $\Delta = -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0$ Δ_0 SM $\Delta_1 \equiv \Delta - \Delta_0 \quad \mathcal{O}(\Lambda^{-2})$ $\Delta_2 \equiv \Delta - \Delta_1 - \Delta_0 \quad \mathcal{O}(\Lambda^{-4})$

Leuven, 21/6/24

SMEFT impact on entanglement markers

Quantum entanglement markers modified by SMEFT operators Results available also with QCD corrections

C. Severi, EV: 2210.09330 [hep-ph]

Differential results

At differential level bigger impact of EFT for high energy tails

16

SMEFT in lepton colliders

$$\begin{aligned} \mathcal{O}_{Q\ell}^{(1)} &= (\overline{Q}_L \gamma^{\mu} Q_L) (\overline{\ell}_L \gamma_{\mu} \ell_L), \\ \mathcal{O}_{Q\ell}^{(3)} &= (\overline{Q}_L \gamma^{\mu} \sigma_I Q_L) (\overline{\ell}_L \gamma_{\mu} \sigma^I \ell_L), \\ \mathcal{O}_{Qe} &= (\overline{Q}_L \gamma^{\mu} Q_L) (\overline{\ell}_R \gamma_{\mu} \ell_R), \\ \mathcal{O}_{t\ell} &= (\overline{t}_R \gamma^{\mu} t_R) (\overline{\ell}_L \gamma_{\mu} \ell_L), \\ \mathcal{O}_{te} &= (\overline{t}_R \gamma^{\mu} t_R) (\overline{\ell}_R \gamma_{\mu} \ell_R). \end{aligned}$$

4-fermion operators

$$\mathcal{O}_{\phi Q}^{(1)} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{Q}_{L}\gamma^{\mu}Q_{L}),$$

$$\mathcal{O}_{\phi Q}^{(3)} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{Q}_{L}\gamma^{\mu}\sigma^{I}Q_{L}),$$

$$\mathcal{O}_{\phi t} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{t}_{R}\gamma^{\mu}t_{R}),$$

$$\ell^{-}$$

$$\mathcal{O}_{tW} = (\overline{Q}_{L}\gamma^{\mu\nu}\sigma_{I}t_{R}) \stackrel{\leftrightarrow}{\phi} W_{\mu\nu}^{I},$$

$$\mathcal{O}_{tB} = (\overline{Q}_{L}\gamma^{\mu\nu}t_{R}) \stackrel{\leftrightarrow}{\phi} B_{\mu\nu}.$$

$$Current operations of the term of the term of the term of term of$$

Degrees of freedom

$$\begin{split} c_{Q\ell}^{(3)} + c_{Q\ell}^{(1)}, \\ c_{VV} &= \frac{1}{4} \big(c_{Q\ell}^{(1)} - c_{Q\ell}^{(3)} + c_{te} + c_{t\ell} + c_{Qe} \big), \\ c_{AV} &= \frac{1}{4} \big(- c_{Q\ell}^{(1)} + c_{Q\ell}^{(3)} + c_{te} + c_{t\ell} - c_{Qe} \big), \\ c_{VA} &= \frac{1}{4} \big(- c_{Q\ell}^{(1)} + c_{Q\ell}^{(3)} + c_{te} - c_{t\ell} + c_{Qe} \big), \\ c_{AA} &= \frac{1}{4} \big(c_{Q\ell}^{(1)} - c_{Q\ell}^{(3)} + c_{te} - c_{t\ell} - c_{Qe} \big). \end{split}$$

$$\begin{aligned} c_{\phi Q}^{(3)} + c_{\phi Q}^{(1)}, \\ c_{\phi V} &= \frac{1}{2} \left(c_{\phi t} + c_{\phi Q}^{(1)} - c_{\phi Q}^{(3)} \right), \\ c_{\phi A} &= \frac{1}{2} \left(c_{\phi t} - c_{\phi Q}^{(1)} + c_{\phi Q}^{(3)} \right). \end{aligned}$$

$$c_{tZ} = c_{W} c_{tW} - s_{W} c_{tB},$$
$$c_{t\gamma} = s_{W} c_{tW} + c_{W} c_{tB},$$

Top2024, 23/9/24

Structure of spin correlations within SMEFT Degeneracy between possible structures arising from SM and EFT

$$A^{[0]} = F^{[0]} \left(\beta^{2} c_{\theta}^{2} - \beta^{2} + 2\right)$$

$$A^{[1]} = 2 F^{[1]} c_{\theta}$$

$$A^{[2]} = F^{[2]} \left(1 + c_{\theta}^{2}\right)$$

$$A^{[6,0,D]} = F^{[6,0,D]}$$

$$A^{[6,1,D]} = F^{[6,1,D]} c_{\theta}$$

$$A^{[8,DD]} = F^{[8,DD]} \left(-\beta^{2} c_{\theta}^{2} - \beta^{2} + 2\right)$$

$$BSM$$

New structures related to dipole operators, the rest gives linear combinations of pre-existing structures C. Severi, F.Maltoni, S. Tentori, EV: 2404.08049

 \mathcal{M}_1 $Q_{\mathrm{t}}, g_{\mathrm{Vt}},$ $g_{\mathrm{At}},$ $c_{\mathrm{AV}},\,c_{\mathrm{AA}},\,c_{\phi\mathrm{A}}$ $c_{\rm VV}, c_{\rm VA}, c_{\phi \rm V}$ $Q_{
m t},\,g_{
m Vt}$ $A^{[0]}$ $A^{[1]}$ $c_{\rm VV}, \, c_{\rm VA}, \, c_{\phi \rm V}$ \mathcal{M}_2 $g_{
m At}$ $A^{[1]}$ $A^{[2]}$ $c_{\rm AV}, c_{\rm AA}, c_{\phi \rm A}$ $A^{[6,0,D]}$ $A^{[6,1,D]}$ $c_{\mathrm{t}Z}, c_{\mathrm{t}\gamma}$

Breaking degeneracies with Quantum Obs

C. Severi, F.Maltoni, S. Tentori, EV: 2404.08049[hep-ph]

Spin correlation observables probe different linear combinations of Wilson coefficients

Breaking degeneracies Top2024, 23/9/24

SMEFT summary

New interactions modify both conventional and quantum observables Dimension-6 operators can modify the degree of entanglement between top quarks SMEFT introduce new structures, thus probing new linear combinations between coefficients

QI observables can break degeneracies between operators when combined with standard observables

New sensitivity

New particle searches

Vector resonances

Spin-1 exchange: spintriplet state as in the SM

$$^{1/3} \operatorname{Tr} \left[\mathcal{C}
ight] = D^{(1)} = + rac{1}{3}$$

 $C_{kk} = 1,$ $C_{rr} = -C_{nn}$

Similar to QCD background

Scalar resonances

$$\mathcal{C}^{[gg,\phi]}\big|_{\alpha=0} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

Scalar: Pure triplet Pseudoscalar: Pure singlet

Eleni Vryonidou

$$\mathcal{C}^{[gg,\phi]}\big|_{\alpha=\pi/2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Also true for the interference with the SM (pure state projector)

000 $\mathcal{C}^{[\mathrm{SUSY}]}$

Diluted Spin Correlations

New scalars and their impact on QI observables

C. Severi, F.Maltoni, S. Tentori, EV: 2401.08751[hep-ph] Relative effect on Quantum observables is significantly larger:

100% vs 1%

Top2024, 23/9/24

Sensitivity analysis How can we check if the Quantum observables help?

Simulate:

$$p p \to t \bar{t} \to b \bar{b} \ell^+ \ell^- \nu_\ell \bar{\nu}_\ell.$$

Compare different observables:

- Event rate
- $D^{(1)}, D^{(k)}, D^{(r)}, D^{(n)}$
- $\Delta \eta = |\eta_{\ell^+} \eta_{\ell^-}|, \Delta \phi = |\phi_{\ell^+} \phi_{\ell^-}|$
- $\cos \varphi = p_{\ell^+} \cdot p_{\ell^-}$

Observable	Systematic unc.	Statistical unc	
$m_{tar{t}}$	$30 { m GeV}$		
$dN/dm_{t\bar{t}}$	$0.03 \cdot N$	\sqrt{N}	
$d(\cos arphi) / dm_{t \bar{t}}$	0.010	$0.5/\sqrt{N}$	
$\bigg \ d(\Delta \eta) \big/ / dm_{t \bar{t}}$	0.010	$3/\sqrt{N}$	
$d(\Delta\phi)/dm_{tar{t}}$	0.010	$2.5/\sqrt{N}$	
$dD^{(1)}/dm_{tar{t}}$	0.015	$0.75/\sqrt{N}$	
$dD^{(k,r,n)}/dm_{t\bar{t}}$	0.025	$0.75/\sqrt{N}$	

Uncertainties motivated by existing measurements

C. Severi, F.Maltoni, S. Tentori, EV: 2401.08751[hep-ph]

Resonances: Vector and SUSY

Less constraining than rate information

Similar to rate information

(Pseudo)Scalar resonances

More constraining than rate information

C. Severi, F.Maltoni, S. Tentori, EV: 2401.08751[hep-ph]

Conclusions

- A new era of quantum observables at colliders is here
- Ideas and methods of QM adjusted to high energy physics
- First measurements, and lots of studies already here
- Top pairs an ideal testing ground, different degrees of correlations can be observed
- QI observables are not only fun but can also help to probe new physics: both EFT and new particles

Thank you for your attention

Eleni Vryonidou

Eleni Vryonidou

Top2024, 23/9/24

Backup

First measurements

Entanglement observation by ATLAS

Entanglement observation by CMS

First measurements

Entanglement observation by ATLAS

Entanglement observation by CMS

First measurements

Entanglement observation by ATLAS

Entanglement observation by CMS

Toponium

- Quasi-Bound State of top and antitop
- Energy states obtained by solving Schrödinger equation with QCD potential
- Described by NRQCD
- Ground state n=1 S-wave
- Spin-singlet vs spin-triplet depending on production mode
 - spin singlet for pp and spin triplet for

$$\begin{bmatrix} (E+i\mathbf{1}_t) - \left(\frac{1}{m_t} + V(\mathbf{r})\right) \end{bmatrix} G(\mathbf{r}, E+i\mathbf{1}_t) = \delta$$

$$V_{\text{QCD}}(r, \mu_B) = C^{[\text{col}]} \frac{\alpha_s(\mu_B)}{r} \left[1 + \frac{\alpha_s}{4\pi} \left(2\beta_0 \log(e^{\gamma}\mu_B r) + \frac{31}{9}C_A - \frac{10}{9}n_f \right) + \frac{10}{9}C_A - \frac{10}{9}n_f \right] + \delta$$

Toponium modelling

We can approximate the impact in the Monte Carlo by introducing a toy model with a resonance

- vector resonance for lepton collisions
- psedoscalar resonance for proton collisions

$$m_{\psi} = m_{\eta} \simeq 2m_{\rm t} - 2\,{
m GeV}, \quad {
m and} \quad \Gamma_{\psi} = \Gamma_{\eta} \simeq 2\,\Gamma$$

Peak of resonance fitted to match the results obtained by the resummed computation CMS toponym simulation based on: Fuks et al. 2102.11281

Significant impact on entanglement markers, hence improvement of measurement agreement with theory Pseudoscalar resonance leads to different spin correlations compared to QCD

Toponium modelling

We can approximate the impact in the Monte Carlo by introducing a toy model with a resonance

- vector resonance for lepton collisions
- psedoscalar resonance for proton collisions

$$m_{\psi} = m_{\eta} \simeq 2m_{\rm t} - 2\,{
m GeV}, \quad {
m and} \quad \Gamma_{\psi} = \Gamma_{\eta} \simeq 2\,\Gamma$$

Peak of resonance fitted to match the results obtained by the resummed computation CMS toponym simulation based on: Fuks et al. 2102.11281

Significant impact on entanglement markers, hence improvement of measurement agreement with theory Pseudoscalar resonance leads to different spin correlations compared to QCD

