Probes of flavour symmetry and violation with top quarks in ATLAS and CMS

Miriam Watson University of Birmingham on behalf of the ATLAS and CMS Collaborations

Top 2024 Workshop 22-27 September 2024

Introduction and overview

- Test universality of couplings to leptons and possible violations of the SM using top quarks
- New results in the **last year**:
 - Lepton flavour universality e/μ
 - Searches for charged-lepton flavour violation (e μ trilepton, $\mu\tau$ trilepton, $\mu\tau$ hadronic New!
 - Search for baryon number violation
 - Search for heavy right-handed Majorana neutrinos New!
- All results shown here use the full Run 2 datasets $\mathcal{L} = 138-140 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$
- Detailed tables of results are given in the backup slides

arxiv:2403.02133, accepted by EPJC

- Lepton flavour universality (LFU) is a fundamental axiom of SM:
 - Couplings of charged leptons e, μ and τ to W, Z are independent of the lepton masses
- Hints of departures from LFU in various sectors
- Test at high momentum in W bosons from top

- Overall scheme
 - Measure ratio

- Ratio reduces impact of lepton identification uncertainties
- Select $t\bar{t}$ events with $e\mu / ee / \mu\mu$ and 1 or 2 b-tagged jets
- Select inclusive Z events with $ee \ / \mu\mu$

arxiv:2403.02133, accepted by EPJC

|η|<1.5

- Apply muon reweighting in $(p_T, |\eta|)$ to reduce kinematic differences between e and μ
- In-situ measurement of lepton isolation efficiencies
- Particularly important due to different $t\bar{t}$ and Z environments
- Measure efficiency vs lepton p_{T} , $|\eta|$

arxiv:2403.02133, accepted by EPJC

- Simultaneous maximum likelihood fit to $t\bar{t}$ events ("b-tag counting method") and Z counts:
 - Yields in $t\bar{t} \rightarrow e\mu \ 1b/2b$ and $Z \rightarrow ee/\mu\mu$ regions
 - $m_{\ell\ell}$ spectrum in $t\bar{t} \rightarrow ee/\mu\mu \ 1b/2b$ regions
- Parametrise fitted yields using deviations in BR

Average predicted BR in SM $\frac{\mathcal{B}(W \to \mu\nu)}{\mathcal{B}(W \to e\nu)} = \frac{\overline{W}(1 + \Delta_W)}{\overline{W}(1 - \Delta_W)}$ $\frac{\mathcal{B}(Z \to \mu\mu)}{\mathcal{B}(Z \to ee)} = \frac{\overline{Z}(1 + \Delta_Z)}{\overline{Z}(1 - \Delta_Z)}$ **Deviations**

arxiv:2403.02133, accepted by EPJC

Apply the precise external LEP+SLD Z measurement to the fitted ratio:

 $R_{Z}^{\mu\mu/ee} = 1.0009 \pm 0.0028$

$$R_W^{\mu/e} = R_{WZ}^{\mu/e} \sqrt{R_{Z-\text{ext}}^{\mu\mu/ee}}$$

= 0.9995 ± 0.0022 (stat) ± 0.0036 (syst) ± 0.0014 (ext)

 $\mathcal{B}(W \to \mu \nu) / \mathcal{B}(W \to e\nu) = 0.9995 \pm 0.0045$

- Most precise e/μ universality test (0.45%)
- Improves on the previous PDG average
- No evidence for LFU violation

ATLAS I FP2 e⁺e⁻→WW, √s=183-207 GeV ATLAS $pp \rightarrow W, \sqrt{s}=7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ LHCb pp→W, \sqrt{s} =8 TeV, 2 fb⁻¹ CMS $pp \rightarrow t\bar{t}, \sqrt{s} = 13 \text{ TeV}, 36 \text{ fb}^{-1}$ PDG average ATLAS (this result) $pp \rightarrow t\bar{t}, \sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 0.92 0.94 0.96 0.98 1.02 $B(W \rightarrow \mu \nu)/B(W \rightarrow e \nu)$

 Measurement dominated by systematic uncertainties: PDF, modelling, lepton uncertainties

Charged lepton flavour violation (cLFV) μ

- cLFV via neutrino oscillations is highly suppressed (BR~10⁻⁵⁵)
- Some BSM processes (leptoquarks, SUSY, 2HQM) involve cLFV
- Experimental evidence for $cL\dot{F}V' \rightarrow ind\dot{c}ation \dot{o}f \dot{B}SM$ physics
 - Model-independent EFT approach
 - Mass scale of new physics $\Lambda \gg$ LHC en scale
 - Limits on vector, scalar and tensor $tq\ell\ell'$ interactions from dimension-6 operators

Wilson e^{μ} coefficients eμ CMS 138 fb⁻¹ (13 TeV) Events / bin $t(\bar{t}) + X(X)$ Data VV(V) Nonprompt SR, m(eu) < 150 GeV

10⁴ **■** *Pre-fit*

CMS

250

200

eμl SR

138 fb⁻¹ (13 TeV)

 $t(\bar{t})+X(X)$

Nonprompt

🕅 Stat. 🕀 syst.

CLFV top decay ($\mu_{\text{vector}}^{\text{vector}} = 3$)

CLFV top production ($\mu^{\text{vector}} = 0.05$)

Data

VV(V)

WZ

🛛 Stat. 🕀 syst

CLFV ($\mu^{vector} = 3$)

Phys. Rev. D 110 (2024) 012014

- Fit regions binned in $H_T = \Sigma p_T(leptons) + p_T(jets)$
- cLFV single-t production produces high-p_T leptons \rightarrow high H_T
- No significant excess in data (1.6σ)
- Extract limits on effective coupling strengths
 - 7-41x better than previous indirect limits
 - Statistically limited
 - Largest systematics from signal modelling, $t\bar{t}W$ and diboson

cLFV vertex		tμτq (q=u,c)
с/Л ² [GeV ⁻²]	u	0.10-0.44
	С	0.36-1.8
BR(t \rightarrow q μ t) [10 ⁻⁶]	u	0.20-0.52
	С	3.4-6.7

Neutrinoless double-beta decay:

- Neutrino mixing \Rightarrow neutrinos have mass
- Type-I seesaw model adds 3 heavy righthanded Majorana neutrinos N₁, N₂, N₃
- N_i couple to SM leptons with strength V_{iN}
- Very active research field in HNL searches at the LHC
- $t\bar{t}$ is novel channel to search for HNL
- Consider only diagonal mixing terms: single N couples to <u>one</u> of e/μ/τ

$$V_{\ell,N} = \begin{pmatrix} V_{e,N} & 0 & 0\\ 0 & V_{\mu,N} & 0\\ 0 & 0 & V_{\tau,N} \end{pmatrix}$$

arxiv:2408.05000, submitted to PRD

- Final state: 2 leptons, hadronic decays of W, W*
- Require:
 - One same-sign e[±]e[±], μ[±]μ[±]
 - \geq 2 b-tagged jets, \geq 4 other jets
- Dominant backgrounds $t\bar{t}$, $t\bar{t}$ +W/Z/ γ /H
- Minimise χ^2 for 4 masses to give best combination: SM (t, W), BSM (t, W)
- 10 signal mass points for HNL: 15-75 GeV
- BDTs for low/high m_N to separate HNL signal using kinematic variables

arxiv:2408.05000, submitted to PRD

- Profile likelihood fits across SR+CRs
- $ee/\mu\mu$ channel fitted separately
 - 1SR + 4CRs (charge flip, heavy flavour, γ conversion and $t\bar{t}W$) for ee
 - 1SR + 2CRs (heavy flavour and $t\bar{t}W$) for $\mu\mu$

- Set limits on HNL cross-sections and coupling parameters for all 3 generations (reinterpret for ττ → ee or ττ → μμ)
- First search for HNL in $t\bar{t}$
- ee/μμ limit extends the ATLAS results beyond 50 GeV to 75 GeV
- Scope for future EFT interpretation

20

Summary

- LFU tested very precisely via top processes: $\mathcal{B}(W \to \mu \nu)/\mathcal{B}(W \to e\nu)$ measured to 0.45%
- A large programme of top BSM searches is in progress, including:
 - Charged lepton flavour violation
 - Baryon number violation
 - Heavy neutral lepton production
- Typical BR bounds for cLFV and BNV are 10⁻⁶ 10⁻⁸

- Effective Field Theory is a useful tool for model-independent BSM searches
- Run 3 datasets will allow new probes of the top quark interactions with improved techniques and precision

Backup slides

arxiv:2403.02133, accepted by EPJC

Number of selected leptons as a function of η in simulated $t\bar{t}$ events with at least one b-tagged jet

Summary of the common object selection, and event selections for $t\bar{t}$ and Z final states

Object selection		
Electrons	$p_{\rm T} > 27.3 {\rm GeV}, \eta < 1.3$	37 or $1.52 < \eta < 2.47$
Muons	$p_{\rm T} > 27.3 {\rm GeV}, \eta < 2.5$	5
<i>b</i> -tagged jets	$p_{\rm T} > 30.0 {\rm GeV}, \eta < 2.5$	5, <i>b</i> -tagging DL1r 70%
Event selection	$t\bar{t} \rightarrow \ell\ell b\bar{b} v\bar{v}$	$Z \to \ell \ell$
Dilepton flavour $(\ell^+\ell^-)$	ee, eµ, µµ	<i>ee</i> , μμ
Dilepton invariant mass	$m_{\ell\ell} > 30 \mathrm{GeV}$	$66\mathrm{GeV} < m_{\ell\ell} < 116\mathrm{GeV}$
<i>b</i> -tagged jet multiplicity	1 or 2	-

arxiv:2403.02133, accepted by EPJC

arxiv:2403.02133, accepted by EPJC

Breakdown of the statistical and systematic uncertainties

Uncertainty [%]	$\sigma_{t\bar{t}}$	$\sigma_{Z \to \ell \ell}$	$R_{WZ}^{\mu/e}$	$R_Z^{\mu\mu/ee}$
Data statistics	0.13	0.01	0.22	0.02
<i>tī</i> modelling	1.68	0.03	0.10	0.00
Top-quark $p_{\rm T}$ modelling	1.42	0.00	0.06	0.00
Parton distribution functions	0.67	0.68	0.15	0.03
Single-top modelling	0.65	0.00	0.05	0.00
Single-top/tī interference	0.54	0.00	0.09	0.00
Z(+jets) modelling	0.06	0.73	0.13	0.20
Diboson modelling	0.05	0.04	0.01	0.00
Electron energy scale/resolution	0.05	0.06	0.10	0.11
Electron identification	0.10	0.07	0.04	0.13
Electron charge misidentification	0.06	0.06	0.01	0.13
Electron isolation	0.09	0.02	0.08	0.04
Muon momentum scale/resolution	0.04	0.02	0.06	0.04
Muon identification	0.18	0.12	0.11	0.23
Muon isolation	0.09	0.01	0.07	0.01
Lepton trigger	0.09	0.12	0.01	0.23
Jet energy scale/resolution	0.08	0.00	0.03	0.00
b-tagging efficiency/mistag	0.14	0.00	0.00	0.00
Misidentified leptons	0.17	0.02	0.15	0.05
Simulation statistics	0.04	0.00	0.06	0.00
Integrated luminosity	0.93	0.83	0.00	0.00
Beam energy	0.23	0.09	0.00	0.00
Total uncertainty	2.66	1.32	0.42	0.45

Fit results

- $\sigma_{t\bar{t}} = 809.5 \pm 1.1 \pm 20.1 \pm 7.5 \pm 1.9 \,\mathrm{pb}$
- $\sigma_{Z \to \ell \ell} = 2019.4 \pm 0.2 \pm 20.7 \pm 16.8 \pm 1.8 \, \text{pb}$

$$R_{WZ}^{\mu/e} = 0.9990 \pm 0.0022 \pm 0.0036$$

cLFV in $\mu\tau$ trilepton channel

Phys. Rev. D 110 (2024) 012014

- Fit regions binned in H_T (scalar sum of lepton and jet p_T)
- H_T separates EFT signal from SM backgrounds: cLFV single-t production produces high-p_T leptons
- No significant excess in data (1.6σ)
- Extract limits on effective coupling strengths (Wilson coefficients)
 - Factor 7-41 better than previous indirect limits
 - Statistically limited
 - Largest systematics are signal modelling, *t*tW and diboson

EFT operator basis

Theoretical cross-sections

Operator	Interaction	Lorentz Structure
${\cal O}_{\rm lq}^{1(ijkl)}$	$(\bar{l}_i\gamma^\mul_j)(\bar{q}_k\gamma_\muq_l)$	Vector
$O_{ m lq}^{3(ijkl)}$	$(\bar{I}_i\gamma^\mu\sigma^II_j)(\bar{q}_k\gamma_\mu\sigma_Iq_l)$	Vector
${\cal O}_{\rm eq}^{(ijkl)}$	$(\bar{e}_i \gamma^{\mu} e_j) (\bar{q}_k \gamma_{\mu} q_l)$	Vector
$O_{ m lu}^{(ijkl)}$	$(\bar{l}_i\gamma^\mul_j)(\bar{u}_k\gamma_\muu_l)$	Vector
${\cal O}_{\rm eu}^{(ijkl)}$	$(\bar{e}_i \gamma^{\mu} e_j) (\bar{u}_k \gamma_{\mu} u_l)$	Vector
$O_{lequ}^{1(ijkl)}$	$(\bar{l}_i e_j) \varepsilon(\bar{q}_k u_l)$	Scalar
$O_{\rm lequ}^{3(ijkl)}$	$(\bar{l}_i \sigma^{\mu\nu} e_j) \varepsilon (\bar{q}_k \sigma_{\mu\nu} u_l)$	Tensor

	Cross-section $\sigma^{+\text{scale}}_{-\text{scale}} \pm \text{PDF}$ [fb]								
	$c_{\text{vector}}^{(ijk3)}$	$c_{\text{vector}}^{(ijk3)}$ $c_{\text{lequ}}^{1(ijk3)}$ $c_{\text{lequ}}^{3(ijk3)}$							
Production $\ell\ell' ut$	$118^{+24}_{-19}\pm1$	$101^{+21}_{-16}\pm1$	$2150^{+410}_{-320}\pm20$						
Production $\ell\ell'ct$	$7.9^{+1.2}_{-1.0}\pm1.6$	$6.1^{+1.0}_{-0.8}\pm1.5$	$153^{+21}_{-18}\pm29$						
Decay $\ell \ell' q_k t$	$6.9^{+1.8}_{-1.3}\pm0.1$	$3.46^{+0.90}_{-0.66}\pm0.03$	$166^{+43}_{-32}\pm 2$						

Requirements for each analysis region

	SR	CRT	$\mathbf{CR} t \bar{t} \mu$
Lepton flavour	2µ1	$ au_{ m had}$	$2\mu 1e \ (\ell_3 = \mu)$
N _{jets}	≥ 1	≥ 2	≥ 1
$N_{b-\text{tags}}$	1	1	≤ 2
$ au_{ m had} p_{ m T}$	> 20 GeV	> 20 GeV	-
Muon $p_{\rm T}$	> 15 GeV	> 15 GeV	> 10 GeV
Higher $p_{\rm T}$ muon	Tight	Tight	Tight
Lower $p_{\rm T}$ muon	Tight	Tight	Loose
Muon charges	SS	OS	-
$m_{\mu\mu}^{OS}$	-	-	>15 GeV
$ m_{\mu\mu}^{\rm OS} - M_Z $	-	<10 GeV	>10 GeV
$3p_{\rm T}^{\mu_1} + \sum m_{\ell\ell}^{\rm OS}$	-	-	< 400 GeV

cLFV in $\mu\tau$ trilepton channel

Phys. Rev. D 110 (2024) 012014

Expected and observed 95% CL upper limits on Wilson coefficients

95% CL upper limits on $|c|/\Lambda^2$ [TeV⁻²] $c_{lq}^{-(ijk3)}$ $c_{\rm eq}^{(ijk3)}$ $c_{\rm eu}^{(ijk3)}$ $c_{\rm lequ}^{3(ijk3)}$ $c_{lu}^{(ijk3)}$ $c_{\mathsf{lequ}}^{1(ijk3)}$ 12 2.4 **Previous** (u) 12 12 12 18 0.31 0.3 Expected (u) 0.33 0.32 0.33 0.08 **Observed** (u) 0.43 0.41 0.4 0.42 0.44 0.10 Previous (c) 14 14 14 14 21 2.6 Expected (c) 1.3 1.2 1.2 1.2 1.4 0.28 **Observed** (c) 1.6 1.6 1.6 1.6 1.8 0.36 Limit on λ^{LQ} (95% CL) m_{S_1} [GeV] Observed Expected 500 1.3 1.1 750 1.7 1.5 1000 2.11.8 Observed and expected 1250 2.5 2.2 exclusion 95% CL upper 1500 2.9 2.5 limits on the leptoquark 2.9 1750 3.3 coupling strength 3.2 2000 3.7

Expected and observed 95% CL upper limits on the branching ratios for specific Wilson coefficients

	95% CL upper limits on $\mathcal{B}(t \to \mu \tau q)$ (× 10 ⁻⁷)						
	$c_{ q}^{-(ijk3)}$	$c_{\rm eq}^{(ijk3)}$	$c_{ m lu}^{(ijk3)}$	$c_{\rm eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{3(ijk3)}$	
Expected (u)	2.3	2.0	1.9	2.2	1.2	3.0	
Observed (u)	4.0	3.6	3.3	3.8	2.0	5.2	
Expected (c)	33	32	32	33	20	41	
Observed (c)	56	54	53	54	34	67	

Expected and observed 95% CL upper limits on the inclusive branching ratio

	95% CL upper limits on $\mathcal{B}(t \to \mu \tau q)$								
	Stat. uncertainty Stat.+syst. uncertain								
Expected	4.6×10^{-7}	5.0×10^{-7}							
Observed	8.2×10^{-7}	8.7×10^{-7}							

arxiv:2408.05000, submitted to PRD

Expected and observed upper limits on the signal cross-sections at 95% CL

m_N [GeV]	15	25	35	40	45	50	55	60	70	75
Exp. $\sigma_{e,N}$ [fb]	21	9.8	7.3	6.9	6.9	6.7	7.2	8.5	18	36
Obs. $\sigma_{e,N}$ [fb]	26	12	8.2	7.8	10	9.7	10	12	26	52
Exp. $\sigma_{\mu,N}$ [fb]	9.3	5.0	3.7	3.5	3.2	3.1	3.2	4.0	8.2	15
Obs. $\sigma_{\mu,N}$ [fb]	7.5	3.9	2.8	2.6	3.2	3.1	3.3	4.2	8.3	15
Exp. $\sigma_{\tau,N}$ [pb]	8.9	2.6	2.1	1.7	1.8	1.8	2.0	3.7	7.0	19
Obs. $\sigma_{\tau,N}$ [pb]	13	3.6	2.7	2.3	2.5	2.2	3.2	5.5	7.3	20

Expected and observed upper limits on the strength of HNL mixing with (left) electron neutrinos, (right) τ-neutrinos at 95% CL

