Vacuum Stability in the Standard Model and Beyond

Tom Steudtner Technische Universität Dortmund

in collabortation with Gudrun Hiller, Tim Höhne, Daniel Litim [arXiv 2401.08811]

> TOP 2024 Saint-Malo, September 26th 2024

1

- » Higgs discovery in 2012 [ATLAS,CMS 2012] \rightarrow Metastability [Buttazzo et al, 2013]
- » Not necessarily a problem But why so close to stability?

- » Higgs discovery in 2012 [ATLAS,CMS 2012] → Metastability [Buttazzo et al, 2013]
- » Not necessarily a problem But why so close to stability?
- » Guidance for building SM extensions?

- » Higgs discovery in 2012 [ATLAS,CMS 2012] \rightarrow Metastability [Buttazzo et al, 2013]
- » Not necessarily a problem But why so close to stability?
- » Guidance for building SM extensions?
- » Can Stability be excluded?

- » Higgs discovery in 2012 [ATLAS,CMS 2012] → Metastability [Buttazzo et al, 2013]
- » Not necessarily a problem But why so close to stability?
- » Guidance for building SM extensions?
- » Can Stability be excluded?

Outline

- » Stability in the SM An update
- » BSM solutions

1. Observables

1. Observables

- Higgs mass $\,M_h\,$
- Top mass M_t
- Strong coupling $\alpha_s^{(5)}(M_Z)$
- Z mass M_Z
- Fermi constant G_F
- Fine structure & hadronic threshold α_e , $\Delta \alpha_e^{(5),\text{had}}$
- Lepton masses $M_{e,\mu, au}$
- Light quark $\overline{\rm MS}$ masses $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2{\rm GeV})$

PDG 2024

1. Observables

- Higgs mass M_h
- Top mass M_t
- Strong coupling $\alpha_s^{(5)}(M_Z)$
- Z mass M_Z
- Fermi constant G_F
- Fine structure & hadronic threshold α_e , $\Delta \alpha_e^{(5), \text{had}}$
- Lepton masses $M_{e,\mu,\tau}$
- Light quark $\overline{\rm MS}$ masses $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2{\rm GeV})$

PDG 2024

2. Matching Observables to \overline{MS}

at least 2L + 3L QCD [Martin, Patel, 2018]

ightarrow running couplings at a referce scale $\alpha_x(\mu_{\rm ref})$ $\mu_{\rm ref}=200\,{\rm GeV}$

1. Observables

- Higgs mass M_h
- Top mass M_t
- Strong coupling $\alpha_s^{(5)}(M_Z)$
- Z mass M_Z
- Fermi constant G_F
- Fine structure & hadronic threshold α_e , $\Delta \alpha_e^{(5),\text{had}}$
- Lepton masses $M_{e,\mu, au}$
- Light quark $\overline{\rm MS}$ masses $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2{\rm GeV})$

PDG 2024

2. Matching Observables to $\overline{\text{MS}}$

```
at least 2L + 3L QCD [Martin, Patel, 2018]
```

- \rightarrow running couplings at a referce scale $\alpha_x(\mu_{\rm ref})$ $\mu_{\rm ref} = 200\,{\rm GeV}$
- 3. Compute Effective Potential

3L (4L QCD) with RG improvement

[Ford, Jack, Jones, 1992] [Martin, 2013-17]

 \rightarrow minima

1. Observables

- Higgs mass M_h
- Top mass M_t
- Strong coupling $\alpha_s^{(5)}(M_Z)$
- Z mass M_Z
- Fermi constant G_F
- Fine structure & hadronic threshold $\alpha_e, \ \Delta\alpha_e^{(5), \rm had}$
- Lepton masses $M_{e,\mu, au}$
- Light quark $\overline{\rm MS}$ masses $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2{\rm GeV})$

2. Matching Observables to $\overline{\text{MS}}$

```
at least 2L + 3L QCD [Martin, Patel, 2018]
```

- \rightarrow running couplings at a referce scale $\alpha_x(\mu_{\rm ref})$ $\mu_{\rm ref} = 200\,{\rm GeV}$
- 3. Compute Effective Potential

```
3L (4L QCD) with RG improvement
```

[Ford, Jack, Jones, 1992] [Martin, 2013-17]

- → minima
- 4. Compute Decay Rate for Metastability

1. Observables

- Higgs mass M_h
- Top mass M_t
- Strong coupling $\alpha_s^{(5)}(M_Z)$
- Z mass M_Z
- Fermi constant G_F
- Fine structure & hadronic threshold α_e , $\Delta \alpha_e^{(5), \text{had}}$
- Lepton masses $M_{e,\mu,\tau}$
- Light quark $\overline{\rm MS}$ masses $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2{\rm GeV})$

PDG 2024

2. Matching Observables to $\overline{\text{MS}}$

at least 2L + 3L QCD [Martin, Patel, 2018]

 \rightarrow running couplings at a referce scale $\alpha_x(\mu_{\rm ref})$ $\mu_{\rm ref} = 200\,{\rm GeV}$

3. Compute Effective Potential

3L (4L QCD) with RG improvement

[Ford, Jack, Jones, 1992] [Martin, 2013-17]

→ minima

-4. Compute Decay Rate for Metastability
only interested in absolute stability

- pontential of classical field h & quantum effects, RG invariant, physical extrema

$$V_{\text{eff}}(h, \mu) = \frac{1}{4}\lambda(\mu)h^4 + \mathcal{O}(\alpha^2)$$

- pontential of classical field h & quantum effects, RG invariant, physical extrema

$$V_{\rm eff}(h,\,\mu) = \frac{1}{4}\lambda(\mu)h^4 + \mathcal{O}(\alpha^2) = \frac{1}{4}\lambda_{\rm eff}(h)e^{4\overline{\Gamma}(h,h_0)}h^4$$
 \longrightarrow stability: $\lambda_{\rm eff} > 0$

- pontential of classical field h & quantum effects, RG invariant, physical extrema

$$V_{\text{eff}}(h, \mu) = \frac{1}{4}\lambda(\mu)h^4 + \mathcal{O}(\alpha^2) = \frac{1}{4}\lambda_{\text{eff}}(h)e^{4\overline{\Gamma}(h,h_0)}h^4$$
 \rightarrow stability: $\lambda_{\text{eff}} > 0$

– match at field value $\,h_0 \propto \mu_{
m ref}\,$ against fixed-order computations at 3L + 4L QCD

[Ford, Jack, Jones, 1992] [Martin, 2013-17]

$$V_{\text{eff}}(h_0, \mu_{\text{ref}}) = \frac{1}{4}\lambda_{\text{eff}}(h_0)h_0^4$$

- pontential of classical field h & quantum effects, RG invariant, physical extrema

$$V_{\text{eff}}(h, \mu) = \frac{1}{4}\lambda(\mu)h^4 + \mathcal{O}(\alpha^2) = \frac{1}{4}\lambda_{\text{eff}}(h)e^{4\overline{\Gamma}(h,h_0)}h^4$$
 \rightarrow stability: $\lambda_{\text{eff}} > 0$

– match at field value $\,h_0 \propto \mu_{
m ref}\,$ against fixed-order computations at 3L + 4L QCD

[Ford, Jack, Jones, 1992] [Martin, 2013-17]

$$V_{\text{eff}}(h_0, \, \mu_{\text{ref}}) = \frac{1}{4} \lambda_{\text{eff}}(h_0) h_0^4 \qquad \lambda_{\text{eff}}(h_0) = \lambda(\mu_{\text{ref}}) \\ +4\lambda^2 \left(\ln \frac{2\lambda h_0^2}{\mu_{\text{ref}}^2} - \frac{3}{2} \right) + \frac{3}{8} g_2^4 \left(\ln \frac{g_2^2 h_0^2}{4\mu_{\text{ref}}^2} - \frac{5}{6} \right) \\ + \frac{3}{16} (g_1^2 + g_2^2)^2 \left(\ln \frac{(g_1^2 + g_2^2) h_0^2}{4\mu_{\text{ref}}^2} - \frac{5}{6} \right) - \sum_f N_f y_f^4 \left(\ln \frac{y_f^2 h_0^2}{2\mu_{\text{ref}}^2} - \frac{3}{2} \right)$$

- pontential of classical field h & quantum effects, RG invariant, physical extrema

$$V_{\rm eff}(h,\,\mu) = \frac{1}{4}\lambda(\mu)h^4 + \mathcal{O}(\alpha^2) = \frac{1}{4}\lambda_{\rm eff}(h)e^{4\overline{\Gamma}(h,h_0)}h^4$$
 \rightarrow stability: $\lambda_{\rm eff} > 0$

– match at field value $h_0 \propto \mu_{\rm ref}$ against fixed-order computations at 3L + 4L QCD

[Ford, Jack, Jones, 1992] [Martin, 2013-17]

$$V_{\text{eff}}(h_0, \, \mu_{\text{ref}}) = \frac{1}{4} \lambda_{\text{eff}}(h_0) h_0^4 \qquad \lambda_{\text{eff}}(h_0) = \lambda(\mu_{\text{ref}}) \\ + 4\lambda^2 \left(\ln \frac{2\lambda h_0^2}{\mu_{\text{ref}}^2} - \frac{3}{2} \right) + \frac{3}{8} g_2^4 \left(\ln \frac{g_2^2 h_0^2}{4\mu_{\text{ref}}^2} - \frac{5}{6} \right) \\ + \frac{3}{16} (g_1^2 + g_2^2)^2 \left(\ln \frac{(g_1^2 + g_2^2) h_0^2}{4\mu_{\text{ref}}^2} - \frac{5}{6} \right) - \sum_f N_f y_f^4 \left(\ln \frac{y_f^2 h_0^2}{2\mu_{\text{ref}}^2} - \frac{3}{2} \right) \\ + \dots$$

– use RG-invariance: resum h around h_0 by defining effective couplings $\bar{\alpha}_i(h)$

$$\bar{\alpha}_i(h_0) = \alpha_i(\mu_{\text{ref}}) \qquad \qquad \bar{\beta}_i(\bar{\alpha}) \equiv \frac{\partial \bar{\alpha}_i(h)}{\partial \ln h} = \frac{\beta_i(\bar{\alpha})}{1 + \gamma(\bar{\alpha})} \qquad \qquad \bar{\Gamma}(h, h_0) = \int_{h_0}^{h} \frac{\mathrm{d}h'}{h'} \frac{\gamma(\bar{\alpha})}{1 + \gamma(\bar{\alpha})}$$

- pontential of classical field h & quantum effects, RG invariant, physical extrema

$$V_{\rm eff}(h,\,\mu) = \frac{1}{4}\lambda(\mu)h^4 + \mathcal{O}(\alpha^2) = \frac{1}{4}\lambda_{\rm eff}(h)e^{4\overline{\Gamma}(h,h_0)}h^4$$
 \rightarrow stability: $\lambda_{\rm eff} > 0$

– match at field value $h_0 \propto \mu_{\rm ref}$ against fixed-order computations at 3L + 4L QCD

[Ford, Jack, Jones, 1992] [Martin, 2013-17]

$$V_{\rm eff}(h_0,\,\mu_{\rm ref}) = \frac{1}{4}\lambda_{\rm eff}(h_0)h_0^4 \qquad \lambda_{\rm eff}(h_0) = \lambda(\mu_{\rm ref}) \\ +4\lambda^2\left(\ln\frac{2\lambda h_0^2}{\mu_{\rm ref}^2} - \frac{3}{2}\right) + \frac{3}{8}g_2^4\left(\ln\frac{g_2^2h_0^2}{4\mu_{\rm ref}^2} - \frac{5}{6}\right) \\ + \frac{3}{16}(g_1^2 + g_2^2)^2\left(\ln\frac{(g_1^2 + g_2^2)h_0^2}{4\mu_{\rm ref}^2} - \frac{5}{6}\right) - \sum_f N_f y_f^4\left(\ln\frac{y_f^2h_0^2}{2\mu_{\rm ref}^2} - \frac{3}{2}\right) \\ + \dots$$

– use RG-invariance: resum h around h_0 by defining effective couplings $\bar{\alpha}_i(h)$

$$\bar{\beta}_i(\bar{\alpha}) \equiv \frac{\partial \bar{\alpha}_i(h)}{\partial \ln h} = \frac{\beta_i(\bar{\alpha})}{1 + \gamma(\bar{\alpha})} \qquad \bar{\Gamma}(h, h_0) = \int_{h_0}^h \frac{\mathrm{d}h'}{h'} \frac{\gamma(\bar{\alpha})}{1 + \gamma(\bar{\alpha})}$$

- evolve $\lambda_{\rm eff}$ to $h \gg h_0$

$$\lambda_{\text{eff}}(h) = \lambda_{\text{eff}}(h_0) + \int_{h_0}^{h} \frac{\mathrm{d}h'}{h'} \sum_{i} \bar{\beta}_i \frac{\partial}{\partial \bar{\alpha}_i(h')} \lambda_{\text{eff}}(h')$$

4L gauge (+ 5L OCD) [Davies, Herren, Poole, Steinhauser, Thomsen, 2019] [Baikov et al., 2016][Herzog et al. 2017][Luthe et al. 2017]

3L Yukawa, Quartic (+ 4L QCD) [Chetyrkin, Zoller, 2013-16] [Bednyakov et al., 2012-14]

- pontential of classical field h & quantum effects, RG invariant, physical extrema

$$V_{\rm eff}(h,\,\mu) = \frac{1}{4}\lambda(\mu)h^4 + \mathcal{O}(\alpha^2) = \frac{1}{4}\lambda_{\rm eff}(h)e^{4\overline{\Gamma}(h,h_0)}h^4$$
 \rightarrow stability: $\lambda_{\rm eff} > 0$

– match at field value $\,h_0 \propto \mu_{
m ref}\,$ against fixed-order computations at 3L + 4L QCD

[Ford, Jack, Jones, 1992] [Martin, 2013-17]
$$\lambda_{\text{eff}}(h_0) = \lambda(\mu_{\text{ref}}) + 4\lambda^2 \left(\ln \frac{2\lambda h_0^2}{\mu_{\text{ref}}^2} - \frac{3}{2} \right) + \frac{3}{8} g_2^4 \left(\ln \frac{g_2^2 h_0^2}{4\mu_{\text{ref}}^2} - \frac{5}{6} \right) + \frac{3}{16} (g_1^2 + g_2^2)^2 \left(\ln \frac{(g_1^2 + g_2^2)h_0^2}{4\mu^2} - \frac{5}{6} \right) - \sum N_f y_f^4 \left(\ln \frac{y_f^2 h_0^2}{2\mu^2} - \frac{3}{2} \right)$$

 $V_{\text{eff}}(h_0, \, \mu_{\text{ref}}) = \frac{1}{4}\lambda_{\text{eff}}(h_0)h_0^4$

– use RG-invariance: resum
$$h$$
 around h_0 by defining effective couplings $\bar{\alpha}_i(h)$

$$\bar{\alpha}_i(h_0) = \alpha_i(\mu_{\text{ref}}) \qquad \qquad \bar{\beta}_i(\bar{\alpha}) \equiv \frac{\partial \bar{\alpha}_i(h)}{\partial \ln h} = \frac{\beta_i(\bar{\alpha})}{1 + \gamma(\bar{\alpha})} \qquad \qquad \bar{\Gamma}(h, h_0) = \int_h^h \frac{\mathrm{d}h'}{h'} \frac{\gamma(\bar{\alpha})}{1 + \gamma(\bar{\alpha})}$$

- evolve $\lambda_{\rm eff}$ to $h \gg h_0$

$$\lambda_{\text{eff}}(h) = \lambda_{\text{eff}}(h_0) + \int_{h_0}^{h} \frac{\mathrm{d}h'}{h'} \sum_{i} \bar{\beta}_i \frac{\partial}{\partial \bar{\alpha}_i(h')} \lambda_{\text{eff}}(h')$$

4L gauge (+ 5L QCD)

[Davies, Herren, Poole, Steinhauser, Thomsen, 2019] [Baikov et al., 2016] [Herzog et al. 2017] [Luthe et al. 2017]

3L Yukawa, Quartic (+ 4L QCD)

[Chetyrkin, Zoller, 2013-16] [Bednyakov et al., 2012-14]

 \rightarrow completely resum all logs $\ln h/\mu_{\rm ref}$

1. Observables

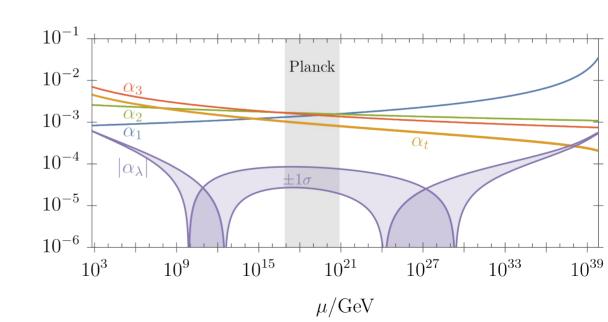
- Higgs mass
- Strong coupling
- Top mass

- Z mass M_Z
- Fermi constant G_F
- Fine structure & hadronic threshold α_e , $\Delta \alpha_e^{(5),\text{had}}$
- Lepton masses $M_{e,\mu, au}$
- Light quark $\overline{\rm MS}$ masses $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2{\rm GeV})$

1. Observables

- Higgs mass
- Strong coupling
- Top mass

- Z mass M_Z
- Fermi constant G_F
- Fine structure & hadronic threshold α_e , $\Delta \alpha_e^{(5),\text{had}}$
- Lepton masses $M_{e,\mu,\tau}$
- Light quark $\overline{\rm MS}$ masses $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2{\rm GeV})$

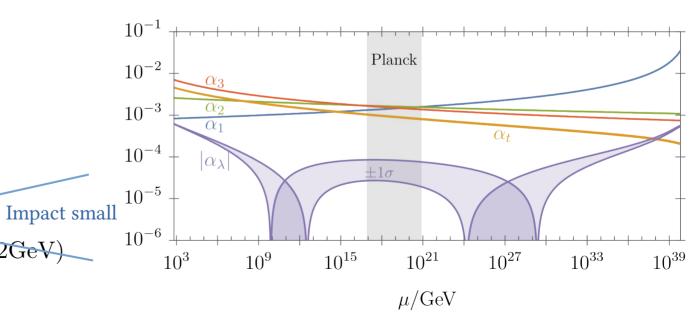


1. Observables

- Higgs mass
- Strong coupling
- Top mass

- Z mass M_Z
- Fermi constant G_F
- Fine structure & hadronic threshold α_e , $\Delta \alpha_e^{(5),\text{had}}$
 - Lepton masses $M_{e,\mu, au}$
- Light quark MS masses

 $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2{
m GeV})$



1. Observables

- Higgs mass
- Strong coupling
- Top mass

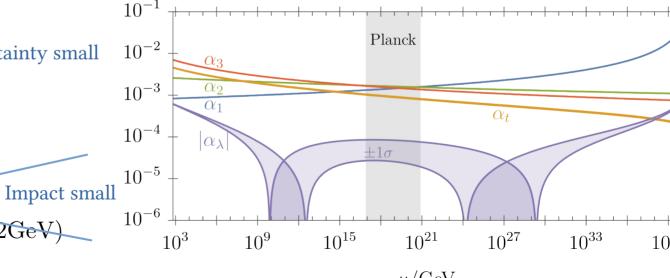


- 1. Observables PDG 2024
 - Higgs mass $M_h = 125.20(11) \text{ GeV}$
 - Strong coupling
 - Top mass

- Uncertainty small – Fermi constant G_F
- Fine structure & hadronic threshold $\alpha_e, \ \Delta\alpha_e^{(5), \mathrm{had}}$
 - Lepton masses $M_{e,\mu, au}$
 - Light quark MS masses

 $m_b(m_b), \ m_c(m_c), \ m_{u.d.s}(2{\rm GeV})$

Planck α_t 10^{-4} $\pm 1\sigma$ 10^{9} 10^{15} 10^{21} 10^{27} 10^{33} 10^{39} 10^{3} μ/GeV

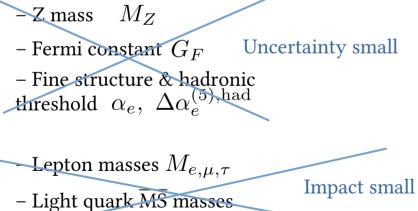


 $+24 \sigma$

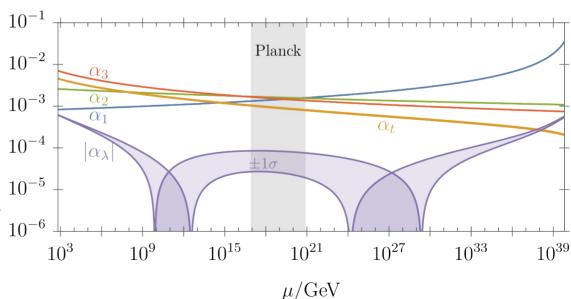
Uncertainty small

1. Observables PDG 2024

- Higgs mass $M_h = 125.20(11) \text{ GeV}$
- Strong coupling $\alpha_s^{(5)}(M_Z)=0.1180(9)$
- Top mass



 $m_b(m_b), \ m_c(m_c), \ m_{u.d.s}(2 {\rm GeV})$



 $+24 \sigma$

 $+3.7 \sigma$

Uncertainty small

1. Observables PDG 2024

- Higgs mass $M_h = 125.20(11) \text{ GeV}$
- Strong coupling $\alpha_s^{(5)}(M_Z)=0.1180(9)$
- Top mass $M_t^{\sigma} = 172.40(70) \; \mathrm{GeV}$ $M_t^{\mathrm{MC}} = 172.57(29) \; \mathrm{GeV}$

Uncertainty small $+24 \sigma$

which one? -1.9σ

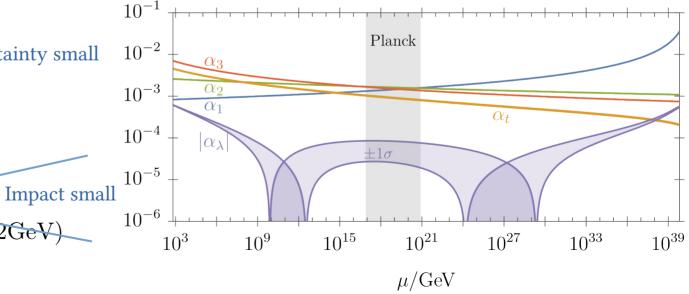
 -5.1σ

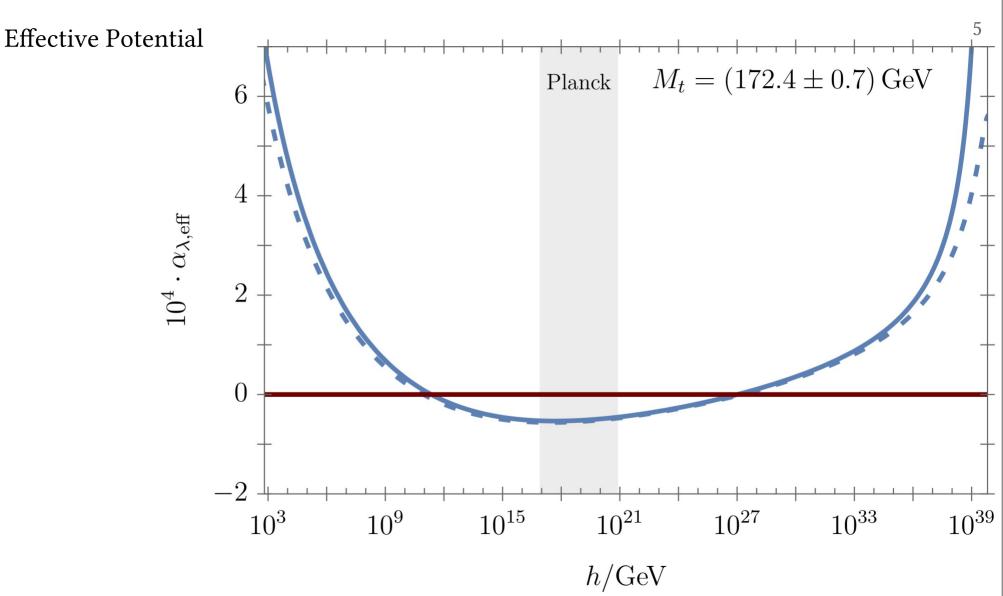
 $+3.7 \sigma$

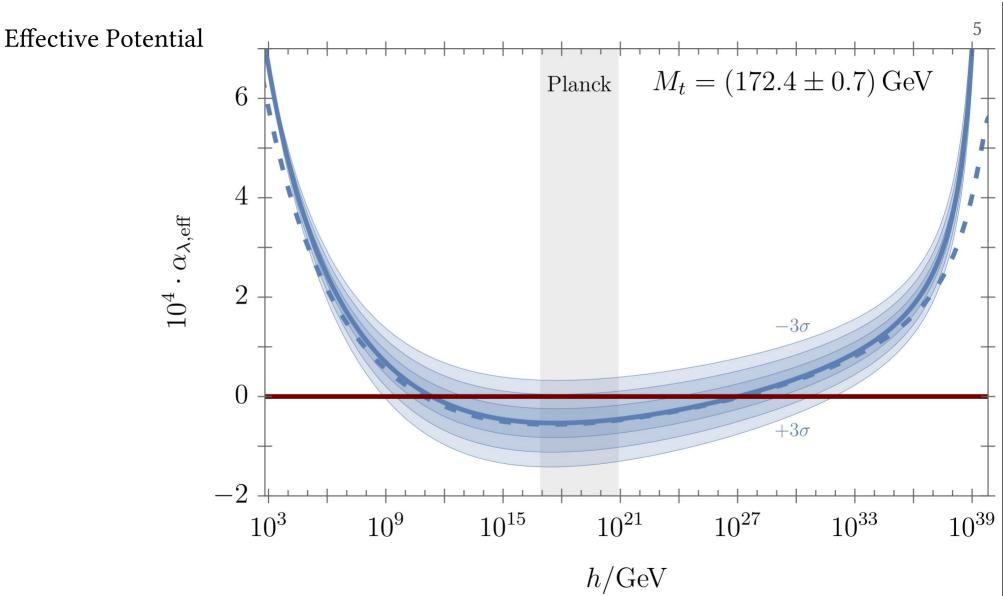
– Z mass
$$M_Z$$

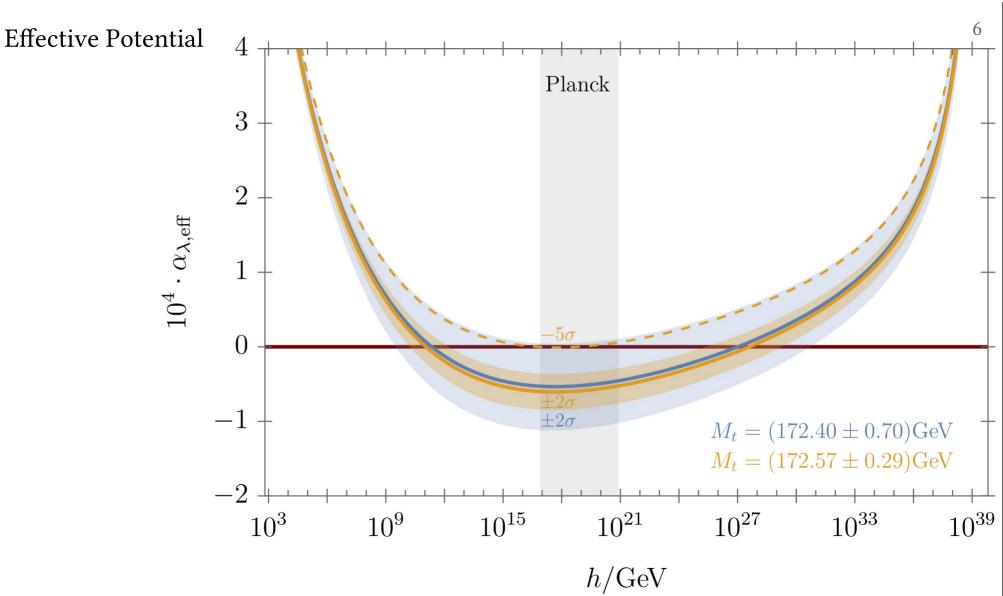
- Fermi constant G_F Uncertainty small
- Fine structure & hadronic threshold $\alpha_e, \ \Delta\alpha_e^{(5), \mathrm{had}}$
 - Lepton masses $M_{e,\mu, au}$
 - Light quark MS masses

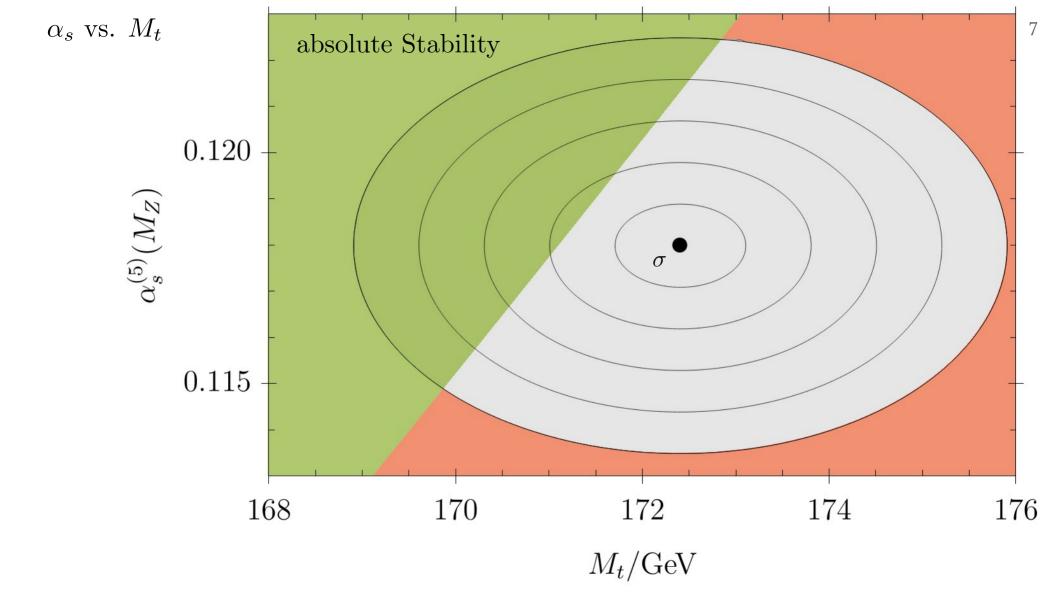
 $m_b(m_b), \ m_c(m_c), \ m_{u,d,s}(2\text{GeV})$

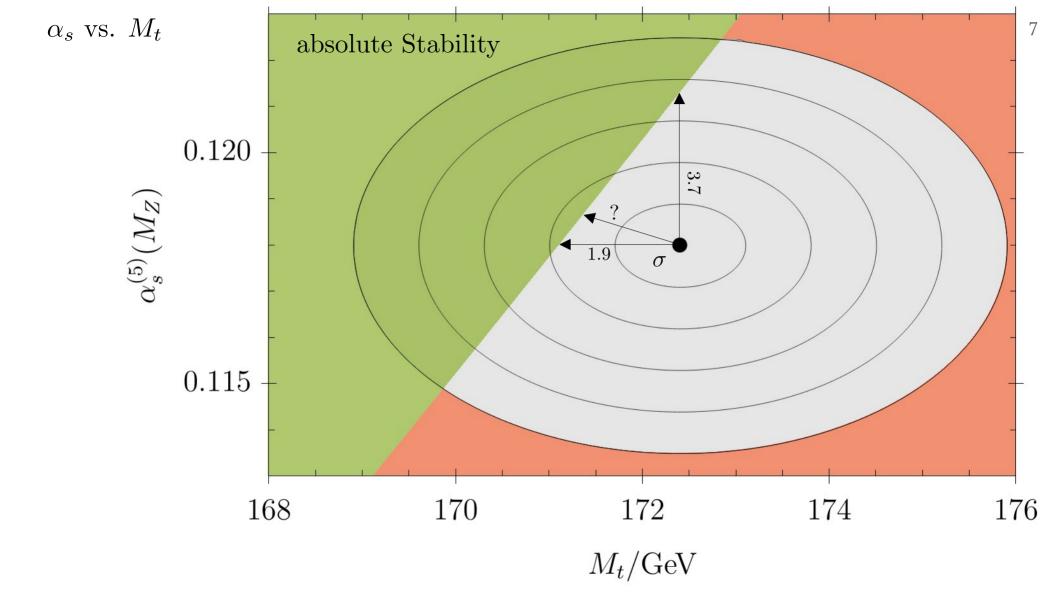


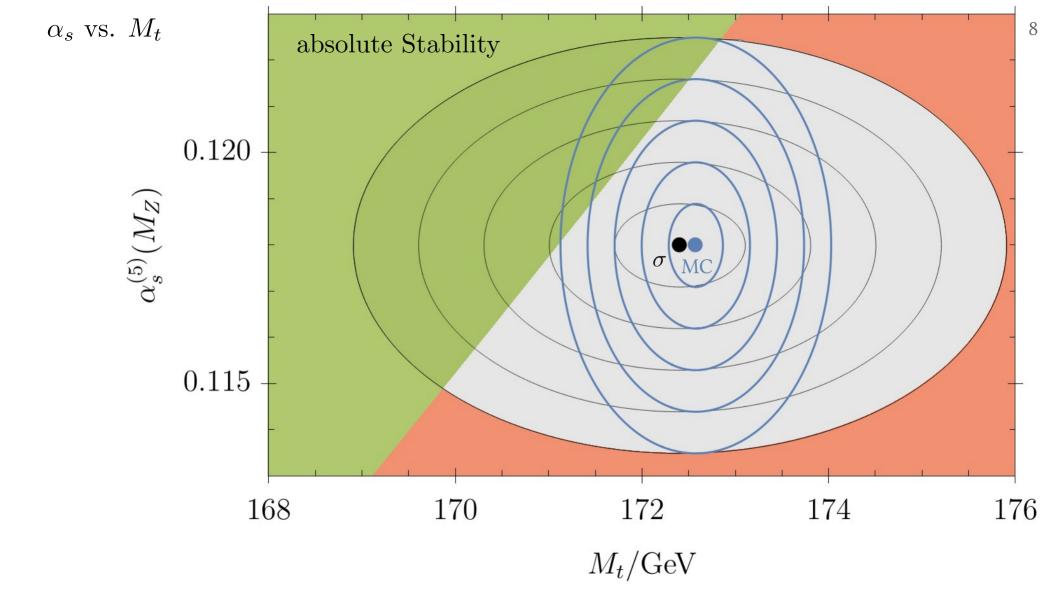


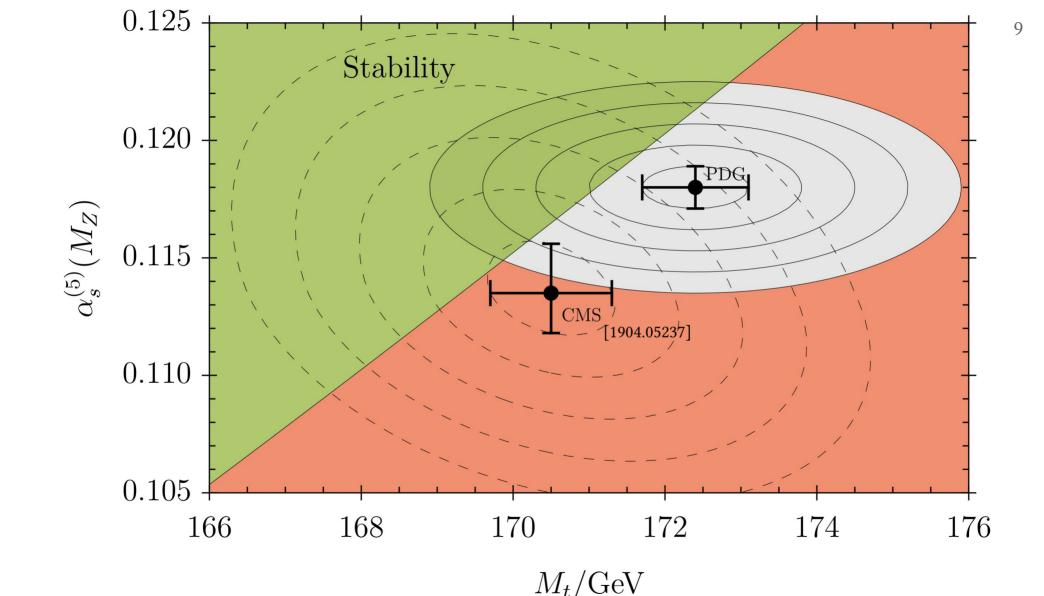




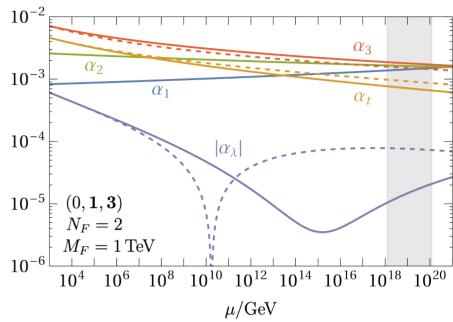






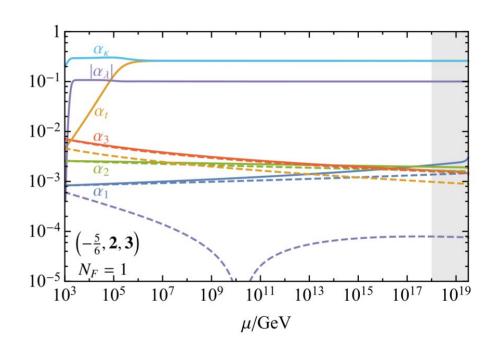


» Gauge Portal – adding new charged fermions [Hiller, Höhne, Litim, TS 2022]



» Gauge Portal – adding new charged fermions [Hiller, Höhne, Litim, TS 2022]

» Yukawa Portal – sizable new Yukawa interactions [Hiller, Höhne, Litim, TS 2022]



» Gauge Portal – adding new charged fermions [Hiller, Höhne, Litim, TS 2022]

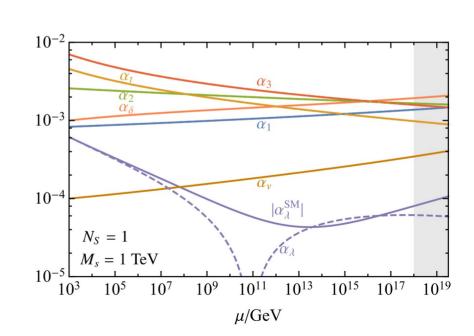
» Yukawa Portal – sizable new Yukawa interactions [Hiller, Höhne, Litim, TS 2022]

» Scalar Portal

[Hiller, Höhne, Litim, TS 2024]

$$V_{H,S} = \lambda (H^{\dagger}H)^{2} + \frac{\delta}{\delta} (H^{\dagger}H)(S^{T}S) + v(S^{T}S)^{2}$$
Portal coupling

$$\beta_{\lambda} = \beta_{\lambda}^{\text{SM}} + \mathcal{N}_{\delta}^{2}$$



Summary

- » evidence for metastability of SM persists
- » more precision measurements of $\alpha_s^{(5)}(M_Z)$ and M_t necessary to exclude stability at 5σ
- » correlation important
- » understanding of MC Top mass required
- » instability is RG dominated

Summary

- » evidence for metastability of SM persists
- » more precision measurements of $lpha_s^{(5)}(M_Z)$ and M_t necessary to exclude stability at 5σ
- » correlation important
- » understanding of MC Top mass required
- » instability is RG dominated
- » many BSM approaches to address SM instability
- » can be valid until Planck scale
- » testable at current and future colliders