

Search for same-charge top-quark pair production in *pp* collisions at 13 TeV with the ATLAS detector

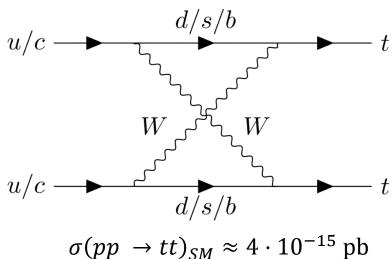
17th International Workshop on Top Quark Physics TOP2024, Saint-Malo, France 26.09.2024

arXiv:2409.14982

TOPQ-2021-14

Aaron van der Graaf (TU Dortmund & Bologna)

On behalf of the ATLAS collaboration



Motivation

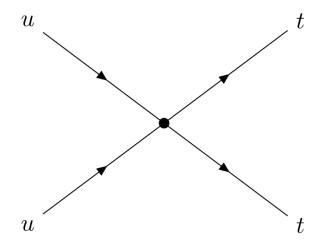
Same-charge (same-sign SS) top-quark pair production is strongly suppressed in the Standard

Model (SM)

- Very clean signature in the dileptonic final state
 - High $p_{\rm T}$ same-charge lepton pair (++ or -)
 - Two b-jets
 - Missing transverse momentum

- Observation would imply the existence of new underlying physics
- First ATLAS search for same-sign top-quark pairs using SM Effective Field Theory (SMEFT)

Effective Field Theory

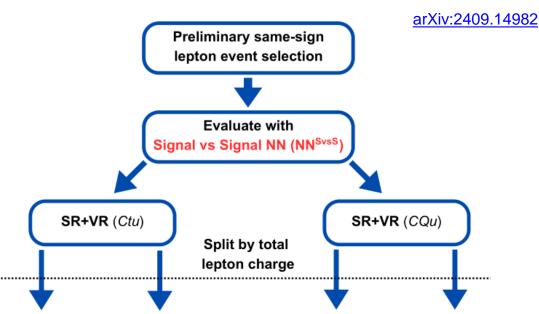

• Three four-fermion operators are considered: $m{O}_{tu}^{(1)}$, $m{O}_{Qu}^{(1)}$, $m{O}_{Qu}^{(8)}$ o Different chirality RR / LR

$$\mathcal{L}_{\mathrm{D=6}}^{qq\to tt} = \frac{1}{\Lambda^2} \left(c_{tu}^{(1)} O_{tu}^{(1)} + c_{Qu}^{(1)} O_{Qu}^{(1)} + c_{Qu}^{(8)} O_{Qu}^{(8)} \right) + h.c.$$

- Only quadratic EFT terms and $\Lambda = 1 \text{ TeV}$
- Default signal sample simulated with following Wilson coefficients (WCs):

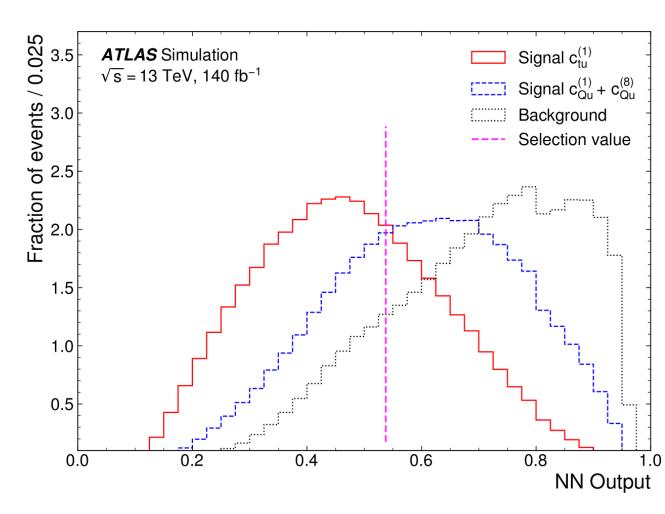
•
$$c_{tu}^{(1)} = 0.04, c_{Qu}^{(1)} = 0.1, c_{Qu}^{(8)} = 0.2 \rightarrow \text{balanced cross-sections}$$

- $\sigma(pp \to tt) = 97.6 \text{ fb } \& \sigma(pp \to \bar{t}\bar{t}) = 2.4 \text{ fb}$
- Highly charge-asymmetric
- Different WCs setups created by reweighting



Analysis strategy

- Full Run 2 pp collision data at $\sqrt{s} = 13$ TeV, 140 fb⁻¹
- Neural networks (NNs) are used to split events in signal regions (SRs) and validation regions (VRs)
 - SRs are split by charge and EFT operators
- Control regions (CRs) described on next slides
 - Used to constrain normalisation of the background processes
- Combined binned profile-likelihood fit over the SRs+CRs simultaneously

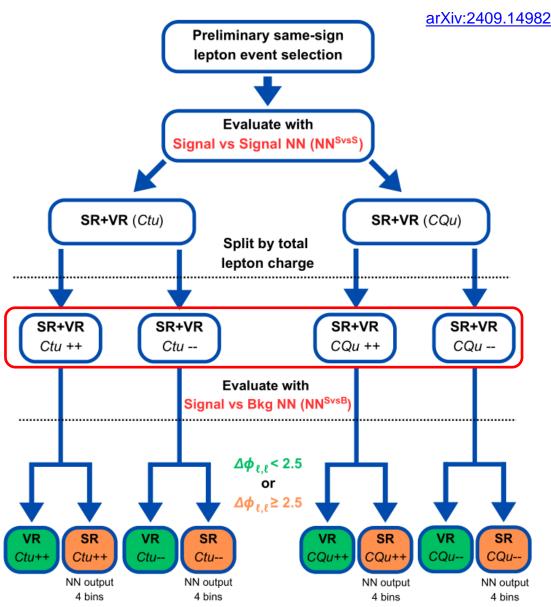

Signal vs Signal NN (NN^{SvsS})

- Goal: **Discriminate** signal events originating from $c_{tu}^{(1)}$ vs $c_{0u}^{(1)}$ or $c_{0u}^{(8)}$
 - No further split between $c_{Qu}^{(1)}$ and $c_{Qu}^{(8)}$ due to being hardly distinguishable
- Only trained on signal events
- Two different signal samples used for training:

•
$$c_{tu}^{(1)} = 0.04$$
 $\rightarrow c_{Qu}^{(1)} = 0, c_{Qu}^{(8)} = 0$

•
$$c_{Ou}^{(1)} = 0.1, c_{Ou}^{(8)} = 0.2 \rightarrow c_{tu}^{(1)} = 0$$

- Simple DNN (5 hidden layers)
- Using odd/even cross-validation
- 9 input variables $(\Delta m_{\ell\ell}, \Delta \phi_{\ell\ell}, \Delta R_{\ell\ell}, \ldots)$



Distinguish background from signal

- Trained NN^{SvsB} for each of the four regions
- Same training and architecture as for the NN^{SvsS}
- Split by charge due to different **kinematics** for tt and $\bar{t}\bar{t}$
 - $\sigma(tt) \ge \sigma(\bar{t}\bar{t}) \to \text{split}$ needed to be sensitive to $\bar{t}\bar{t}$
- 6 input variables $(H_{\rm T}^{\rm lep}, p_{\rm T}^{\rm jet0}, N_{\rm jets}, ...)$
- NN^{SvsB} output distribution used in the profile likelihood fit for the SRs
- Finalize SR definitions by requiring $\Delta \Phi_{\ell,\ell} \geq 2.5$
 - Events with $\Delta\Phi_{\ell,\ell} < 2.5$ used as VRs

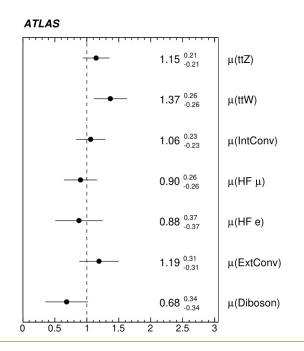
Analysis makes use of 9 CRs

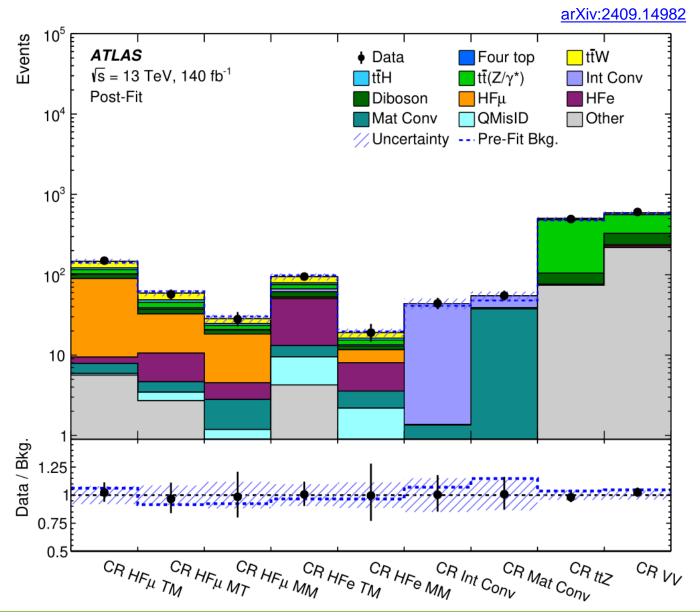
- 5 dilepton (2ℓ) CRs:
 - All 2ℓ -CRs are enriched in heavy flavor e or μ fakes CRs
 - \triangleright Orthogonal due to $N_{\rm b-tags}$ and lepton isolation requirements
- 4 three lepton (3ℓ) CRs:
 - $t\bar{t}Z$ CR
 - Diboson CR
 - Material / internal photon conversion CRs
 - > Orthogonal due to requiring 3 leptons (electrons / muons)
- Normalization of major background processes constrained in the binned profile likelihood fit with dedicated CRs
- Dominant background: ttW
 - Normalisation constrained by bins with low NN output score in the SRs

Systematic Uncertainties

- Apart from statistical uncertainties $t\bar{t}W$ modelling uncertainties have the largest impact on the final results
- Normalizations of major background process constrained via the CRs
 - For all other processes a normalization uncertainty is applied
- For larger backgrounds additional modeling uncertainties are applied by comparing the nominal sample with an alternative sample → details in paper / backup:
 - Parton shower and hadronization variation $(t\bar{t}W, t\bar{t}Z, t\bar{t}H)$
 - Generator variation $(t\bar{t}W, t\bar{t}H) \rightarrow \text{different matrix element generator}$
 - Scale variations $(t\bar{t}W, t\bar{t}Z, t\bar{t}H, VV)$

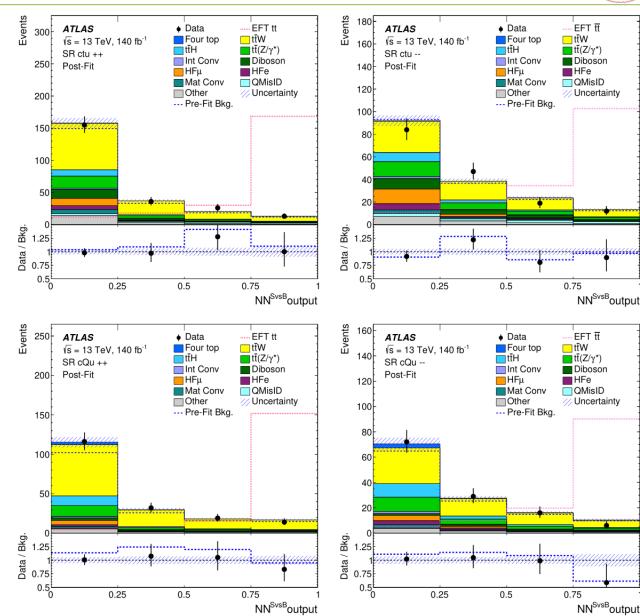
Statistically dominated analysis!


Using the full set of ATLAS experimental uncertainties



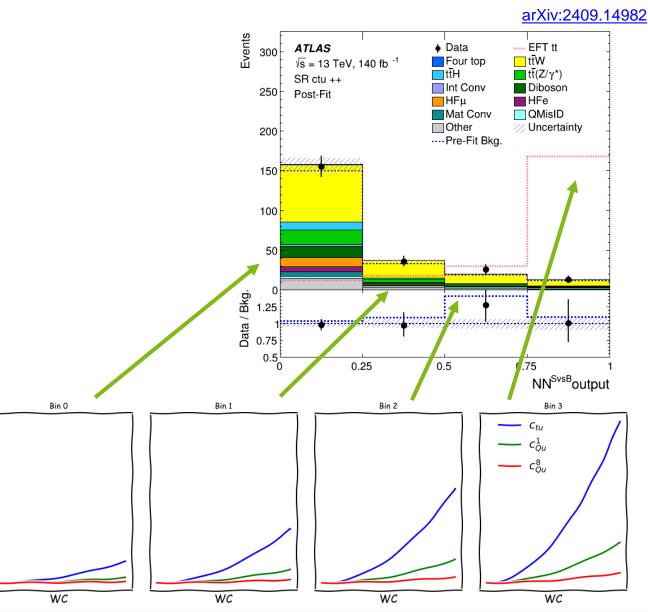
Results – CRs

- Very good post-fit agreement in the CRs
- All normalizations are in agreement with the SM, except ttW
 - Known excess in agreement with <u>ATLAS ttWcross-section measurement</u>



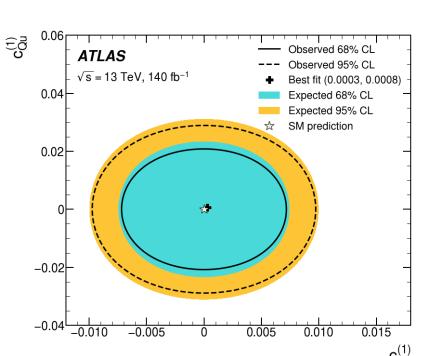
Results – SRs

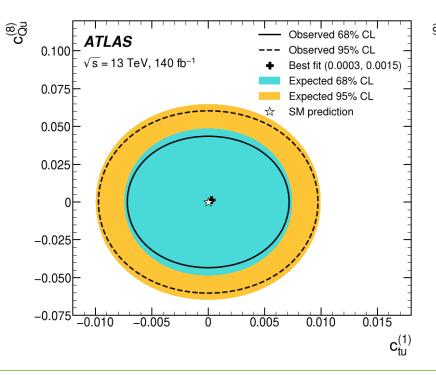
- Good post-fit agreement in the SRs
- No significant signal contribution observed
 - All three WCs fitted to $< 10^{-6}$
- Negligible signal contribution is not shown in the plots
- Setting 1D-limits on the WCs by scanning the likelihood while varying a single WC at a time

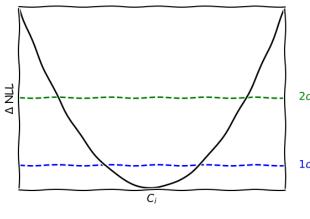


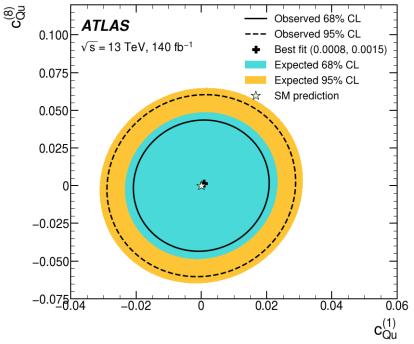
Signal parametrization in the SRs

- For each SR bin the EFT parametrization for the three WCs is fitted
 - Uses all available EFT samples
- Allows to fit any set of WC values
- Direct connection between WC values and cross-section
- Parameterization is fitted individually for each SR
- Used to derive limits by scanning different sets of WC values

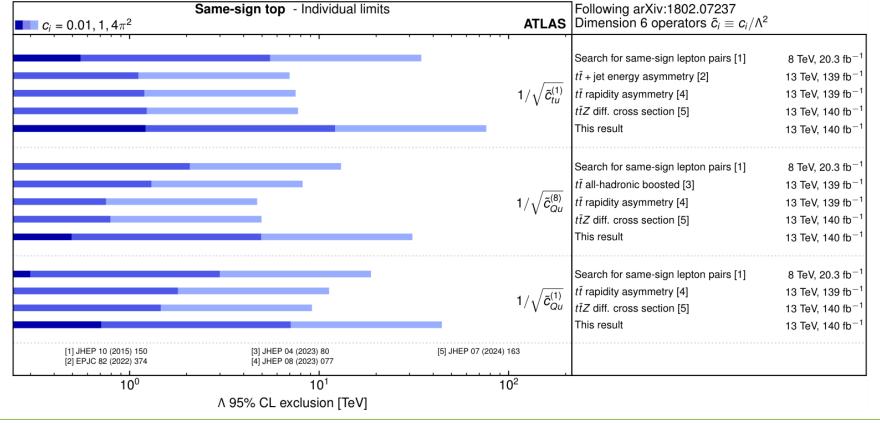





Results – Likelihood scans

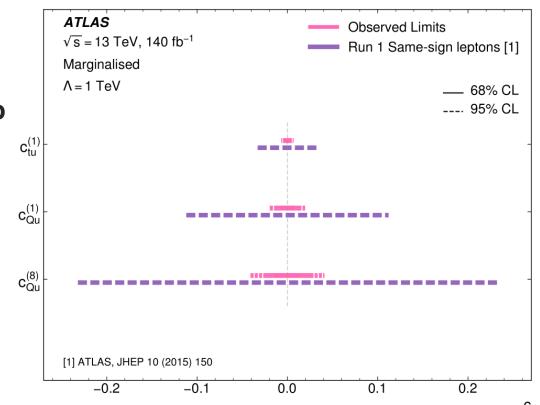

- 1D observed (expected) limits at 95% CL:
 - $c_{tu}^{(1)} < 0.0068 (0.0071)$ $c_{Qu}^{(1)} < 0.020 (0.022)$ $c_{Qu}^{(8)} < 0.041 (0.046)^{\frac{7}{4}}$

2D limits for the three sets of WC combinations



Results – Λ exclusion limits

- New physics scale Λ exclusion limits for three WCs values: $C_i = 0.01, 1, 4\pi^2$ at 95% CL
- Previously most stringent limits by Run 1 ATLAS search for same-sign lepton pairs



Summary & Conclusion

- Results are in agreement with SM
- No significant signal detected
- Precision limited by statistical uncertainties
- Observed upper limit at 95% CL: $\sigma(pp \to tt \, / \, \bar{t}\bar{t}\,) <$ 1.6 fb
- Most stringent limits on $c_{tu}^{(1)}$, $c_{Qu}^{(1)}$, $c_{Qu}^{(8)}$
 - Improving previous WC limits by a factor of ≈ 10

	Wilson Coefficient limits at 95% CL ×100			
Uncertainties	$c_{tu}^{(1)}$	$c_{Qu}^{(1)}$	$c_{Qu}^{(8)}$	
Statistical uncertainty only Statistical + modeling uncertainties	[-0.65, 0.65] [-0.67, 0.67]	_	[-3.9, 3.9] [-4.0, 4.0]	
Total uncertainty	[-0.68, 0.68]	[-2.0, 2.0]	[-4.1, 4.1]	

Backup Slides

Data and MC simulation

- MC samples shown in parentheses are used for the estimation of systematic uncertainties
- Electron charge misidentification background is estimated from data using Z → ee events

$$\begin{split} O_{tu}^{(1)} &= [\overline{t}_{\mathrm{R}} \gamma^{\mu} u_{\mathrm{R}}] [\overline{t}_{\mathrm{R}} \gamma_{\mu} u_{\mathrm{R}}], \\ O_{Qq}^{(1)} &= [\overline{Q}_{\mathrm{L}} \gamma^{\mu} q_{\mathrm{L}}] [\overline{Q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}}], \\ O_{Qq}^{(3)} &= [\overline{Q}_{\mathrm{L}} \gamma^{\mu} \sigma^{a} q_{\mathrm{L}}] [\overline{Q}_{\mathrm{L}} \gamma_{\mu} \sigma^{a} q_{\mathrm{L}}], \\ O_{Qu}^{(1)} &= [\overline{Q}_{\mathrm{L}} \gamma^{\mu} q_{\mathrm{L}}] [\overline{t}_{\mathrm{R}} \gamma_{\mu} u_{\mathrm{R}}], \\ O_{Qu}^{(8)} &= [\overline{Q}_{\mathrm{L}} \gamma^{\mu} T^{A} q_{\mathrm{L}}] [\overline{t}_{\mathrm{R}} \gamma_{\mu} T^{A} u_{\mathrm{R}}]. \end{split}$$

Process	Generator	ME order	PS	PDF (ME)	Tune
SS $tt/\bar{t}\bar{t}$ EFT signal	MadGraph5_aMC@NLO	LO	Рутніа 8	NNPDF3.0Lo	A14
$t\bar{t}W$	Sherpa 2.2.10	NLO	SHERPA	NNPDF3.0nnlo	Sherpa default
	(MADGRAPH5_AMC@NLO)	(NLO)	(Pythia 8)	(NNPDF3.0nlo)	(A14)
	(Powheg Box)	(NLO)	(Pythia 8)	(NNPDF2.3Lo)	(A14)
	(Powheg Box)	(NLO)	(Herwig 7.2)	(NNPDF3.0nlo)	(H7.2-Default)
$t\bar{t}t\bar{t}$	MadGraph5_aMC@NLO	NLO	Рутніа 8	NNPDF3.1NLO	A14
$t \bar{t} H$	Powheg Box	NLO	Рутніа 8	NNPDF3.0nlo	A14
	(Powheg Box)	(NLO)	(Herwig 7.04)	(NNPDF3.0nlo)	(H7UE-MMHT)
	(MADGRAPH5_AMC@NLO)	(NLO)	(Pythia 8)	(NNPDF3.0nlo)	(A14)
$tar{t}Z/\gamma^*$	MADGRAPH5_AMC@NLO	NLO	Рутніа 8	NNPDF3.0nnlo	A14
	(MADGRAPH5_AMC@NLO)	(NLO)	(HERWIG 7.2)	(NNPDF3.0NLO)	(H7.2-Default)
	(MADGRAPH5_AMC@NLO)	(NLO)	(Pythia 8)	(NNPDF3.0nlo)	(A14 Var3c)
$t\bar{t}ll$	MADGRAPH5_AMC@NLO	NLO	Рутніа 8	NNPDF3.0nlo	A14
$tar{t}$	Powheg Box	NLO	Рутніа 8	NNPDF3.0nlo	A14
s-, t-channel,	POWHEG BOX	NLO	Рутніа 8	NNPDF3.0nlo	A14
Wt single top					
$Z \rightarrow l^+ l^- \text{ (matCO)}$	Powheg Box	NLO	Рутніа 8	CT10nlo	AZNLO
$Z \rightarrow l^+l^- + (\gamma *)$	POWHEG BOX	NLO	Рутніа 8	CT10nlo	AZNLO
$Z \rightarrow l^+ l^-$	Sherpa 2.2.1	NLO	SHERPA	NNPDF3.0nnlo	SHERPA default
W+jets	Sherpa 2.2.1	NLO	SHERPA	NNPDF3.0nnlo	Sherpa default
$V\gamma$	Sherpa 2.2.8	NLO	SHERPA	NNPDF3.0nnlo	Sherpa default
VV, $qqVV$,	Sherpa 2.2.2	NLO	SHERPA	NNPDF3.0nnlo	SHERPA default
$VV_{lowm_{\ell\ell}}, VVV$					
$t(Z/\gamma^*), t\bar{t}t, t\bar{t}WH$	MadGraph5_aMC@NLO	LO	Рутніа 8	NNPDF2.3Lo	A14
$t\bar{t}W^+W^-$, $t\bar{t}ZZ$, $t\bar{t}HH$	MADGRAPH5_AMC@NLO	LO	Рутніа 8	NNPDF2.3Lo	A14
$tW(Z/\gamma^*), tWH, tHqb$	MADGRAPH5_AMC@NLO	NLO	Рутніа 8	NNPDF3.0nlo	A14
VH	Powheg Box	NLO	Рутніа 8	NNPDF3.0nlo	A14

Event and object reconstruction

Leptons

- Using single- and dilepton-triggers
- $p_{\rm T} > 10~{\rm GeV}$
- $|\eta_{\text{Cluster}}| < 1.37 \text{ or } 1.52 < |\eta_{\text{Cluster}}| < 2.47 \text{ (e) and } |\eta| < 2.5 \text{ } (\mu)$

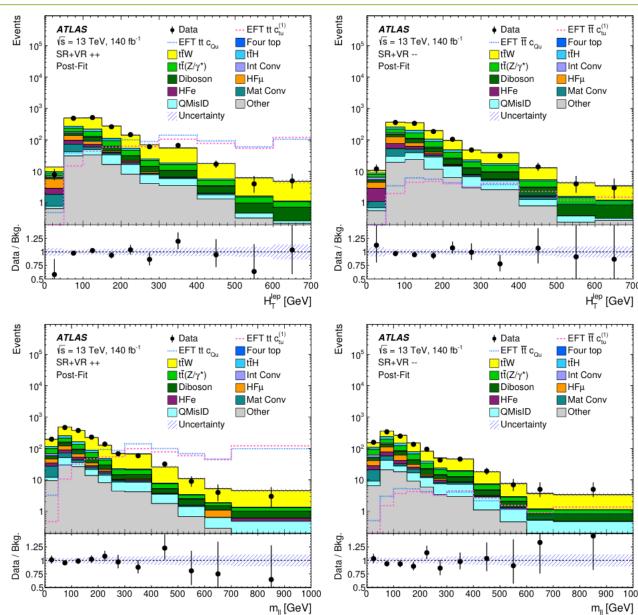
Jets

- Jets reconstruction via **PFlow**:
 - $\Delta R = 0.4$ $|\eta| < 2.5$
 - $p_{\mathrm{T}} > 25~\mathrm{GeV}$ JVT $> 0.5~\mathrm{for}~p_{\mathrm{T}} < 25~\mathrm{GeV},~|\eta| < 2.4$
- B-tagging of jets via **DL1r**:
 - 60% and 77% WP are used in this analysis

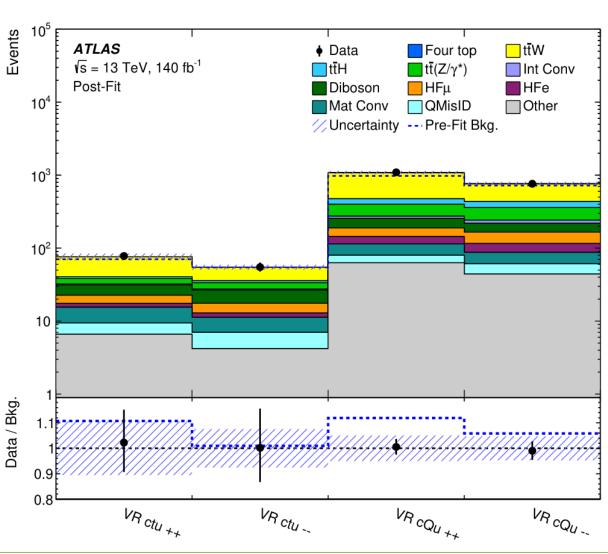
- Use BDT discriminate (PLIV) to suppress non-prompt leptons
- Reject background electrons with wrong charge assignment with ECIDS BDT
- Sequential overlap removal

Control region definitions (tables)

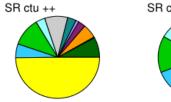
	CR HF TM	CR HF MT	CR HF MM
$p_{\mathrm{T}}^{\mathrm{lep}}$ [GeV]		>20	
BDT WPs (same-sign ℓ pair)	TM	MT	MM
$N_{ m jets}$		≥2	
$N_{b-{ m taggedjets}}$		1 at 77%	
Total lepton charge		++ or	
$m_T(\text{all }\ell,E_{\mathrm{T}}^{\mathrm{miss}})$	< 250) GeV	-

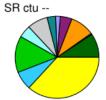

	VV CR	$t\bar{t}Z$ CR	CR Int C	Conv	CR Mat Conv
$p_{\mathrm{T}}^{\mathrm{lep}}$ [GeV]		> 20 (SS pair), > 10 (0	OS)		
BDT WPs	$M_{\rm inc}M_{\rm inc}$ (SS pair) $L_{\rm inc}$ (OS)				
Total charge	±1				
Electron Conv. candidate		-	Int. Co	nv.	Mat. Conv.
$N_{ m jets}$	2 or 3	≥ 4		2	≥0
$N_{b-{ m taggedjets}}$	1 b-tagged jet at 60% WP $\parallel \ge 2$ b-tagged jets at 77% WP			0 at 77%	
$ m_{SFOS}-m_Z $	< 10 GeV			> 10) GeV
$ m(\ell\ell\ell) - m_Z $	-	-		< 10) GeV

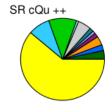
Merged regions (SR+VR)

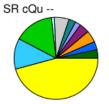


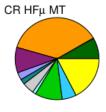
Results - VRs & Pie chart

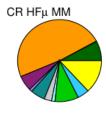


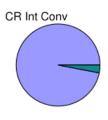


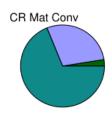


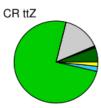




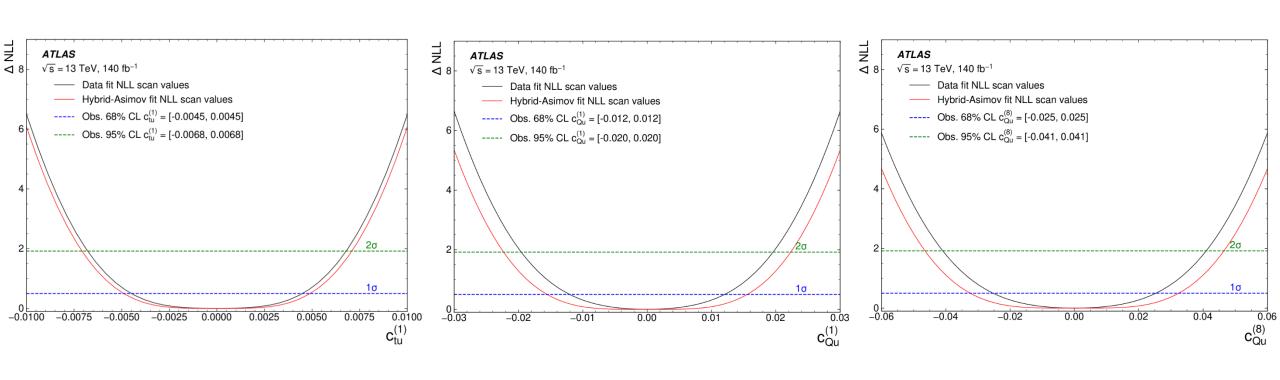




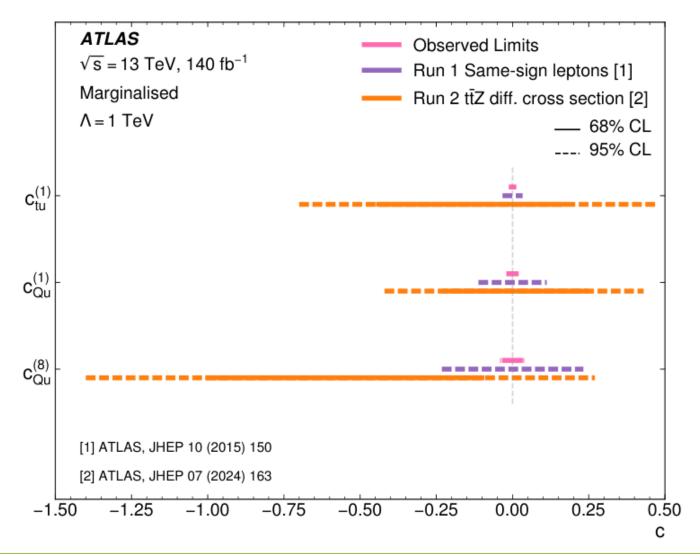




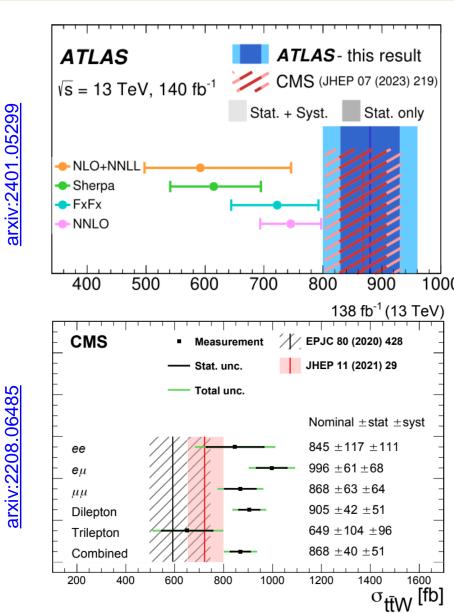
CR VV



Results – 1D likelihood scans



Results – alternative limits comparison



$t\bar{t}W$ measured cross-section

- Previous analysis within ATLAS and CMS saw tension in the measured $t\bar{t}W$ cross-section and the SM
- In this analysis $t\bar{t}W$ is normalized to:
 - QCD: 674.7 fb
 - EW: 47.7 fb
- The normalisation factor for $t\bar{t}W$ QCD is fitted to 1.37
- Post-fit $t\bar{t}W$ cross-section:
 - $\sigma(t\bar{t}W) = 674.7 \text{ fb} \cdot 1.37 + 47.7 \text{ fb} = 972.0 \text{ fb}$

Yield Tables SRs

Process	SR_{ctu++}	SR_{ctu}	SR_{cQu++}	SR_{cQu}
$t\bar{t}W$	114 ± 15	62 ± 10	110 ± 15	56.9 ± 9.0
$t\bar{t}(Z/\gamma*)$	25.5 ± 2.4	24.1 ± 2.6	19.5 ± 1.8	19.1 ± 1.8
$tar{t}H$	12.4 ± 7.5	12.3 ± 7.1	15.1 ± 9.6	15.1 ± 9.2
Four top	0.72 ± 0.15	0.69 ± 0.14	4.16 ± 0.83	4.07 ± 0.82
Diboson	18.1 ± 9.3	15.9 ± 8.1	6.3 ± 3.2	4.2 ± 2.1
HFe	6.5 ± 2.9	7.6 ± 3.0	3.0 ± 1.1	4.9 ± 2.5
$ ext{HF}\mu$	12.6 ± 2.7	15.7 ± 3.2	6.3 ± 1.8	5.7 ± 1.7
Mat Conv	7.6 ± 2.5	5.5 ± 1.6	2.73 ± 0.83	3.3 ± 1.2
Int Conv	2.7 ± 1.6	3.0 ± 1.7	2.1 ± 1.2	2.7 ± 1.6
QMisID	8.1 ± 2.2	8.1 ± 2.2	1.48 ± 0.39	1.48 ± 0.39
Other	20.3 ± 5.4	13.3 ± 3.9	9.3 ± 2.7	7.0 ± 2.6
Total Bkg.	228 ± 11	167.7 ± 7.9	180 ± 10	124.5 ± 6.3
Data	230	162	181	123

Yield Tables 2ℓ CRs

Process	CR HF μ TM	CR HF μ MT	CR HFμ MM	CR HFe TM	CR HFe MM
$t \bar{t} W$	24.0 ± 4.9	10.3 ± 2.0	3.73 ± 0.87	15.1 ± 2.9	2.76 ± 0.59
$tar{t}(Z/\gamma*)$	13.6 ± 2.1	6.20 ± 0.97	2.59 ± 0.47	8.4 ± 1.7	1.90 ± 0.32
$tar{t}H$	6.6 ± 4.0	3.2 ± 1.9	1.28 ± 0.79	4.1 ± 2.4	0.90 ± 0.58
Four top	0.113 ± 0.028	0.071 ± 0.017	0.046 ± 0.012	0.069 ± 0.019	0.036 ± 0.010
Diboson	11.9 ± 6.1	4.9 ± 2.5	2.2 ± 1.1	8.6 ± 4.4	1.35 ± 0.72
HFe	1.6 ± 1.1	5.9 ± 2.9	1.71 ± 0.97	37 ±12	4.5 ± 1.6
${ m HF}\mu$	± 14	21.9 ± 5.6	13.8 ± 3.2	2.20 ± 0.66	3.62 ± 0.99
Mat Conv	2.0 ± 7.1	1.20 ± 0.56	1.62 ± 0.51	3.7 ± 2.1	1.38 ± 0.43
Int Conv	0.68 ± 0.41	1.7 ± 1.0	0.30 ± 0.18	5.5 ± 3.2	0.48 ± 0.30
QMisID	0.28 ± 0.13	0.75 ± 0.54	0.38 ± 0.26	5.2 ± 2.9	1.6 ± 1.0
Other	5.6 ± 1.5	2.71 ± 0.66	0.81 ± 0.21	4.2 ± 1.0	0.63 ± 0.16
Total Bkg.	147 ± 12	59.0 ± 5.1	28.4 ± 3.4	94.4 ± 9.2	19.1 ± 2.2
Data	150	57	28	95	19

Yield Tables 3ℓ CRs

Process	CR Int Conv	CR Mat Conv	CR ttZ	CR VV
$t\bar{t}W$	_	_	8.4 ± 1.8	24.5 ± 4.7
$tar{t}(Z/\gamma*)$	_	_	378 ± 32	230 ± 27
$tar{t}H$	_	_	10.0 ± 6.3	6.3 ± 4.0
Four top	_	_	1.61 ± 0.32	0.092 ± 0.020
Diboson	0.025 ± 0.019	1.34 ± 0.72	± 15	90 ± 45
HFe	_	_	0.47 ± 0.35	9.2 ± 6.8
${ m HF}\mu$	_	_	1.04 ± 0.35	7.5 ± 1.8
Mat Conv	1.3 ± 1.1	37.6 ± 8.6	0.59 ± 0.40	2.19 ± 0.77
Int Conv	42.5 ± 6.8	15.6 ± 4.3	0.14 ± 0.15	1.66 ± 0.96
QMisID	_	_	0.22 ± 0.17	0.83 ± 0.41
Other	_	_	74 ± 23	218 ± 40
Total Bkg.	43.9 ± 6.6	54.6 ± 7.3	503 ±22	590 ± 23
Data	44	55	494	605