tt in BSM Phase space

Sandra Consuegra Rodríguez (RWTH Aachen) on behalf of the CMS Collaboration

17th International Workshop on Top Quark Physics (TOP2024), Saint-Malo, 22-27th September 2024

Motivation

- Precision measurements of top quark pair (*tt*) production
 - * stringent tests for validity of SM
 - * crucial role in search for new phenomena
- Large $t\bar{t}$ data sample collected at the CERN LHC
 - center-of-mass energies
- All measurements performed as function of kinematic observables of:
 - * visible part of event (e.g. jets or charged leptons)
 - * intermediate particles [e.g. (anti-)top quark or W boson]

RWTHAACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

* several measurements of differential cross sections for various $t\bar{t}$ decay channels & different

For some BSM scenarios invisible part of event modified

* precise & direct measurements of undetected particles in event (e.g. neutrinos) **Crucial role in search for new phenomena**

Introduction

- First measurement of differential $t\bar{t}$ cross section as a function of:
 - \star transverse momentum of dineutrino system $p_{T}^{\nu\nu}$

 - ***** two-dimensional measurement of both observables
- Selection of observables
 - signature but including additional sources of undetected particles
- Main differences wrt "nominal" differential measurements:
 - \star Focus on observables related to dineutrino system $\vec{p}_{\rm T}^{\rm miss}$

RWTHAACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

Physics briefing

```
* minimum azimuthal distance between \vec{p}_{T}^{\nu\nu} and leptons: min[\Delta \phi(\vec{p}_{T}^{\nu\nu}, \vec{p}_{T}^{\ell})]
```

* driven by distinction between SM $t\bar{t}$ process & potential BSM scenarios with comparable

```
* Dedicated DNN regression to improve \vec{p}_{T}^{miss} resolution for dileptonic t\bar{t} events
```


Event selection

- at least two reconstructed jets, $p_T > 30$ GeV, $|\eta| < 2.4$, at least one b-tagged
- two charged leptons (electrons, muons) of opposite charge (dilepton channel)
- $|\eta| < 2.4$, $p_T > 25$ (20) GeV for (sub)leading lepton
- veto on events with additional leptons (electrons or muons) with $p_T > 15$ GeV
- Events further separated into two **channels**:
 - $\circ e^+e^-/\mu^+\mu^-$ same-flavor (SF)

$\circ e^{\pm}\mu^{\mp}$ different-flavor (DF)

RWTHAACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

PAS-TOP-24-001

CMS-PHO-EVENTS-2024-027-3

Distributions after event selection

- Clean selection with overall ~78% signal contribution \bullet
- Largest background contributions from $t\bar{t}$ other, single top, and DY+jets ullet

Excellent Data/MC agreement, for individual channels & combination, and across different distributions ullet

→miss resolution

• Sources of \vec{p}_{T}^{miss} :

 \star the two prompt neutrinos produced in dileptonic $t\bar{t}$ decays $(p_T^{\nu\nu})$

- * non-prompt neutrinos from semileptonic meson decays in jets
- * mismeasurement of particle momenta during reconstruction

(largest impact arising from mismeasurements in jets)

• Poor resolution or large biases of reconstructed \vec{p}_{T}^{miss} * stability of unfolding procedure can be compromised

RWTHAACHEN UNIVERSITY | tt in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

Improving $\vec{p}_{T}^{\text{miss}}$ resolution

- DNN regression to correct $\vec{p}_{\rm T}^{\rm miss}$ for detector effects
 - * ensure accurate reconstruction of its magnitude & direction
- Feed-forward, fully-connected DNN with two output nodes:

***** x & y components of difference between:

$$\vec{p}_{\mathsf{T},\mathsf{PUPPI}}^{\mathsf{miss}}$$
 & $\vec{p}_{\mathsf{T},\mathsf{gen}}^{\mathsf{miss}}$

(simultaneously correct direction & magnitude of $\vec{p}_{T}^{\text{miss}}$)

- Resolution of $\vec{p}_{T}^{\text{miss}}$ improved by ~15% wrt $\vec{p}_{T.PUPPI}^{\text{miss}}$
- Resolution of $\phi(\vec{p}_{\rm T}^{\rm miss})$ improved by ~12%
 - * finer binning in differential measurements of target observables thanks to bin-to-bin migration reduction while keeping an stable unfolding

RNTHAACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

Experimental uncertainties

RWTHAACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

- $p_{T}^{\nu\nu}$ & 2D distribution
 - ★ Jet Energy Scale (JES) dominant uncertainty for most bins

- min[$\Delta \phi(\vec{p}_{\mathbf{T}}^{\nu\nu}, \vec{p}_{\mathbf{T}}^{\ell})$]
 - ***** JES uncertainty dominant at low values
 - ***** Lepton reconstruction efficiency

- 2D distribution
 - * Large $p_T^{\nu\nu}$, lowest min $[\Delta \phi(\vec{p}_T^{\nu\nu}, \vec{p}_T^\ell)]$ bin: choice of tW– $t\bar{t}$ overlap removal scheme
 - + Highest $p_T^{\nu\nu}$ bin & min[$\Delta \phi(\vec{p}_T^{\nu\nu}, \vec{p}_T^\ell)$] bin: sizeable contributions from ME-Parton Shower matching and ME scale

 $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

PAS-TOP-24-001

★ At large values:

- choice of tW– $t\bar{t}$ overlap removal scheme
- normalization of single top production background
- Matrix element (ME) scale
- min[$\Delta \phi(\vec{p}_{T}^{\nu\nu}, \vec{p}_{T}^{\ell})$]
 - ★ At large values:
 - choice of tW– $t\bar{t}$ overlap removal scheme

Detector level distributions

uncertainties in this phase space **RWTH**AACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

PAS-TOP-24-001

11

BSM Closure test

RWTHAACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

- potential BSM contributions based on stop pair production scenario:
 - * stop mass: 525 GeV
 - ★ neutralino mass: 350 GeV
- pseudodata based on:
 - \star nominal $t\bar{t}$ signal prediction
 - * prediction for stop pair production scenario scaled by factor of ten
- nominal, regularized & bin-bybin unfolding
 - based on all data-taking periods combined
- nominal distribution used for response matrix (blue)

BSM Closure test

RWTHAACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

- expected distributions with both neutralinos included in particle level definition correctly reproduced
 - ***** reasonable sensitivity to distortion in measured spectrum from potential **BSM** contributions

Fixed-order theory calculations at NLO and NNLO: <u>10.1007/JHEP05(2021)212</u>

- Ratio between theoretical predictions & measurement in bottom pannel
- Total (statistical) uncertainty ulleton measurement in orange (dark grey)
- χ^2 tests for all measurements, both with & without inclusion of uncertainties on predictions for quantitative assessment of agreement (see backup for detailed summary table)

Differential cross-sections: min $[\Delta \phi(\vec{p}_{T}^{\nu\nu}, \vec{p}_{T}^{\ell})]$

RWTHAACHEN UNIVERSITY

Differential cross-sections: 2D distribution

Fixed-order theory calculations at NLO and NNLO: <u>10.1007/JHEP05(2021)212</u>

- Slightly larger χ^2 values wrt to one-dimensional distributions
- Good agreement for NNLO & POWHEG across most parts of phase space with NNLO calculation showing best agreement
- Only MC@NLO+PYTHIA prediction leads to χ^2/ndf values well above unity

Summary

First differential cross section measurements based on dineutrino kinematics in top pair production

Absolute & normalized differential cross-section results based on unregularized least square unfolding method

- Differential cross sections compared to predictions based on MC simulation & two fixed-order theory calculations (corresponding to NLO & NNLO in QCD)
- Dedicated DNN regression significantly improving resolution of magnitude & azimuthal angle of missing transverse momentum
- Remarkable agreement between different theory predictions & measured differential cross \bullet sections
 - For both one-dimensional measurements, best overall description provided by POWHEG
 - For two-dimensional measurement best agreement provided by NNLO fixed-order calculation

 $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

Main analysis result

Thank you!

Contact

Lehrstuhl für Experimentalphysik I B und I. Physikalisches Institut RWTHAACHEN INVERSITY RWTH Aachen https://www.rwth-aachen.de/

RWITHAACHEN UNIVERSITY $|t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

Sandra Consuegra Rodríguez (RWTH Aachen) 0000-0002-1383-1837

CMS, Higgs & Top Physics, Detector Calibration sandra.consuegra.rodriguez@rwth-aachen.de +49 - 241 - 80 - 28721Personal website:

https://sconsueg.web.cern.ch/sconsueg/

> Additional material

EXAMPLAACHEN | $t\bar{t}$ in BSM Phase space (26.09.2024) | Sandra Consuegra Rodríguez (RWTH Aachen) |

Distributions after event selection

- Clean selection with overall ~78% signal contribution ullet
- Largest background contributions from $t\bar{t}$ other, single top, and DY+jets ullet

Excellent Data/MC agreement, for individual channels & combination, and across different distributions ullet

χ^2 tests for differential cross section measurements

Measurement	ndf	POWHEG	POWHEG	MC@NLO	NLO	NNLO
		+PYTHIA	+HERWIG	+PYTHIA		
$p_{\mathrm{T}}^{ u u}$	9	6.8 (1.6)	8.0 (1.0)	9.0 (3.9)	7.1 (1.4)	12.5 (2.5)
$\min[\Delta \phi(p_{\mathrm{T}}^{ u u},\ell)]$	6	7.3 (1.5)	7.4(1.4)	11.5 (2.7)	12.3 (2.5)	11.9 (4.0)
2D	12	18.8 (4.9)	22.4 (3.7)	31.6 (8.6)	24.0 (3.5)	15.8 (4.2)
norm. $p_{\rm T}^{\nu\nu}$	8	6.4 (3.8)	8.3 (3.2)	6.4 (5.8)	6.7 (1.9)	13.3 (5.5)
norm. min $[\Delta \phi(p_{\rm T}^{\nu\nu}, \ell)]$	5	7.2 (7.0)	7.2 (6.7)	9.2 (8.4)	11.7 (5.4)	11.7 (5.8)
norm. 2D	11	18.1 (16.0)	21.4 (14.5)	28.2 (22.8)	23.1 (7.0)	14.8 (8.5)

