

Transformer Neural Networks for the Measurement of $t\bar{t}H$ Production in the $H \rightarrow b\bar{b}$ Decay Channel with ATLAS

Chris Scheulen (he/him) on behalf of the ATLAS Collaboration

TOP 2024 Workshop – YSF

2024-09-27

Introduction

- tt H provides direct probe of top Yukawa coupling
- $H \rightarrow b\bar{b}$ adds sensitivity to high Higgs boson p_{T} region in differential measurements
- Challenging dominant irreducible tt + bb background
 - Dedicated systematics studies for ATLAS legacy analysis (ATL-PHYS-PUB-2022-006)
 - → Also dedicated measurements (see Egor's talk on Tuesday, Knut's talk for tt + cc in ATLAS)

Previous Measurements

First Full Run 2 ATLAS

Low signal strengths: Compatibility with Standard Model at 8.5% (ATLAS) and 2% (CMS)

ATLAS Run 2 Legacy Analysis

main focus of this talk

- Re-analysis of full ATLAS Run 2 dataset
- Inclusive & differential measurement
- Major updates incorporated into analysis:
 - Improved Object Model
 - Consistent 4FS tt + bb systematics model
 - Loosened kinematic pre-selection
 - ➡ tt̄H(bb̄) acceptance of 6.3% (increase by factor 3)
 - Overhauled event classification & Higgs p_{T} reco:

Attention-based Transformers (arXiv:1706.03762) using basic particle information

- Event Selection:
 - Single-lepton resolved:
 - ≥5 jets,≥3 b-tags
 - Single-lepton boosted:

≥ 4 jets, large-radius jet boosted Higgs boson candidate, ≥ 2 additional b-tags

- Dilepton:
- ≥ 3 jets, ≥ 3 b-tags

(arXiv:2407.10904)

Overall Analysis Strategy

- tt
 tf
 + jets backgrounds split in 5 categories by event classification Transformer
 - Constraint of each category possible in simultaneous fit
- SRs split by reconstruction Transformer Higgs boson p_{τ} in each channel
 - Additional split of single-lepton $t\bar{t} + \ge 2b$ component for better constraining power
- Fit respective Transformer classifiers (Higgs boson p_T in single-lepton boosted regions)

Transformer Architecture

Transformer Performance

Classification

• Loosening of event selection possible due to good signal & background classification capabilities

Transformer Performance

Reconstruction

- Diagonal migration matrices for the Higgs boson p_{T} STXS bins
- Bin edges of SR optimised for responses of tt H truth Higgs boson p_{T}
 - Further reduction in migrations between SRs

Specifically targets high Higgs boson $p_{\rm T}$ region via STXS 5 and STXS 6

Results & Conclusion

- Inclusive cross-section: σ(tt
 H) = 411 ± 54 (stat.) ± (syst.) fb (SM prediction: 507 ± 56 fb at NLO QCD+EW)
- Significant part in improvement due to MVA developments

Observed (expected) significance: 4.6 (5.4) σ

Most precise single-channel tte cross-section measurement to date (both inclusive & differential)!

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN IN PUBLICA COMMODA

- ATLAS legacy & CMS parameters follow dedicated studies summarised in ATL-PHYS-PUB-2022-006, LHCHWG-2022-003
- Nominal ttbb process simulated with POWHEGBOXRES+PYTHIA8 in 4-flavour scheme $(m_t = 172.5 \text{ GeV}, m_b = 4.75 \text{ GeV} \text{ for CMS}, \text{ and } m_b = 4.95 \text{ GeV} \text{ for ATLAS})$
- $h_{damp} \& h_{bornzerodamp}$ control NLO gluon emission in POWHEG, negligible impact observed in studies

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN IN PUBLICA (

tībb Samples – A Comparison

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA

- Comparison of samples used in ATLAS Run 2 legacy & CMS in LHCHWG-2022-003
 - Fiducial volume of \geq 4 b-jets, \geq 6 jets, 1 lepton and \geq 4 b-jets, \geq 4 jets, 2 leptons
- Comparison also to 5-flavour scheme tt + jets samples
- Uncertainty bands from stats & QCD scale variations

tt + Jets Systematics Model

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA

B3

Systematic	ATLAS First Full Run 2	ATLAS Run 2 Legacy	tt + Jets Components
ME Scale	_	independent ME $\mu_{\text{R}}, \mu_{\text{F}}$ variations	All
ISR	Var3c and ME μ_R , μ_F variations	A14 tune Var3c variations	All
FSR	PS FSR μ_R variations		All
Parton Shower & Hadronisation	Powheg + Herwig7 alternative (5FS only)	Powheg + Herwig7 alternative (5FS and 4FS)	All
NLO Matching	MG5_aMC@NLO+Pythia8 (5FS only)	PP8 p _r -hard = 1 alternative	All
ISR Recoil	_	PP8 dipole recoil alternative	tī + ≥ 1b
h _{damp} variation	_	h _{damp} up-variation alternative	tī + c/light
tī + ≥ 1b Fractions	PP8 vs. Powheg + Herwig7	_	tī + ≥ 1b
Cross-section	6% (tī̄ + light) and 100% (tī̄ + c)	_	tī̄ + c/light

Systematics Rankings & Grouped Impact

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA

Uncertainty source	$\Delta \sigma_{t\bar{t}H}$ (fb)		$\Delta \sigma_{t\bar{t}H}/$	$\Delta \sigma_{t\bar{t}H} / \sigma_{t\bar{t}H} (\%)$	
Process modelling					
$t\bar{t}H$ modelling					
$t\overline{t}H$ radiation	+35	-21	+9	-5	
$t\overline{t}H$ parton shower	+32	-19	+8	-5	
$t\overline{t}H$ matching	<0.1	-0.3	<0.1	-0.1	
$t\overline{t}H$ theory	+25	-17	+6	-4	
$t\overline{t} + \ge 1b$ modelling					
$t\overline{t} + \ge 1b$ radiation	±.	31	:	±8	
$t\overline{t} + \ge 1b$ parton shower	±29		±7		
$t\overline{t} + \ge 1b$ matching	±19		±5		
$t\overline{t} + \ge 1c$ modelling	± 18		±4		
$t\overline{t}$ + light modelling	±5		±1		
tW modelling	±16		± 4		
Minor background modelling	±19		±5		
Flavour tagging	±36		±9		
Jet modelling	± 22		±5		
Monte-Carlo statistics	±17		±4		
Other instrumental	±10		± 2		
Total systematic uncertainty	+85	-75	+21	-18	
Normalisation factors	±ź	21	:	±5	
Total statistical uncertainty	±:	54	±	-13	
Total uncertainty	+101	-92	+25	-22	

Pre-Fit Background Compositions

Self-Attention & Pairing Layer

Input Features

Feature	Description	
p_x	Object momentum in x-direction.	
p_{y}	Object momentum in y-direction.	
p_z	Object momentum in <i>z</i> -direction.	
energy	Object energy.	
p_{T}	Object transverse momentum.	
mass	Object mass.	
η	Object pseudo-rapidity.	
ϕ	Object azimuthal angle.	
$\cos\phi$	Sine of object azimuthal angle.	
$\sin \phi$	Cosine of object azimuthal angle.	
PCBT bin	DL1r pseudo-continuous b-tagging bin assigned to jets in the following manner. Set to 0 for leptons and $E_{\rm T}^{\rm miss}$.	Some redundancy in input
	(1, if un-tagged	features, as seen to improve

	1,	n un-tagged	
	2,	if tagged at [85%, 77%)	
feature = <	3,	if tagged at [77%, 70%)	
	4,	if tagged at [70%, 60%)	
	5,	if tagged at 60%.	

Transformer performance

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA SETT 1737

lepton type	Lepton type of input objects. Set to 1 for electrons, 2 for muons, and 0 for jets and
	$E_{\rm T}^{\rm miss}$.
lepton charge	Charge of lepton objects in units of e . Set to 0 for jets and $E_{\rm T}^{\rm miss}$.
$E_{\rm T}^{\rm miss}$ flag	Whether input object is $E_{\rm T}^{\rm miss}$ (value of 1) or not (value of 0).