Search for displaced top quark in the tracker of the CMS experiment at the LHC

Phenomenology : Eur. Phys. J. C 83, 299 (2023)

Paul Vaucelle

Université de Strasbourg France

TOP2024, Saint-Malo 27/09/2024 Displaced Top Quark

Looking for displaced top quarks + prompt leptons

Based on *a phenomenological study*^[1] to look for displaced top quarks, we focus on the RPV process with a Bino-like neutralino production from slepton decay [1] : Andrea, J., Bloch, D., Conte, É. et al. Probing displaced top quark signature at the LHC Run 3. Eur. Phys. J. C 83, 299 (2023).

- $Br(\tilde{\mu} \rightarrow \mu \chi_1^0) = 1$
- 2 long-lived neutralinos
- Two prompt muons (Trigger)

- $\lambda_{312}^{''}$ RPV Coupling
- \bullet displaced $\tilde{\chi}^1_0$ decays \rightarrow 3 to 5 jets
- Up to 2 displaced vertices

Schematic view of the signal process in the CMS tracker

 $\bullet\,$ The two neutralinos are back-to-back in ϕ

- $\bullet\,$ Jets / tracks emerging from the decay of a long-lived neutralino
- Information from those displaced jets / tracks is used to disentangle the expected signal from the very large background

Tracking Efficiency

- Tracking efficiency drops significantly after pixels
- Make use of the large track multiplicity of the signal
- $\bullet~\sim 10$ tracks at gen level
- CERN-CMS-DP-2017-015

Monte-Carlo samples

Generation of MC Samples for the full Run2 + beginning of Run 3 (2022-2024)

$\chi_1^0 \ c au(\mathrm{cm})$	$ ilde{\mu}$ Mass (GeV)	$ ilde{\chi}_1^0$ Mass (GeV)	\tilde{t} Mass (GeV)	$\lambda_{312}^{''}$ Coupling
0.1 to 30	200 to 500	180 to 480	>1000	10^{-5} to 10^{-1}

Table – SUSY particle masses and neutralino c au and $\lambda_{312}^{''}$ coupling. Average $\tilde{\chi}_1^0 \ \beta \gamma = 2.5$

Analysis Strategy

Rejection of V^0 candidates and secondary interactions

Remove tracks from various backgrounds

Secondary Interactions : Photon Conversions and Nuclear Interactions

- Matching of the secondary interactions vertices with the material of the tracker is done using an approximate map of the tracker
- Active layers : pixel and silicon strip layers
- Passive layers : Beam pipe, Pixels inner and outer support, rails
- Reject pair of tracks associated to a Sec.Int vertex matched with an active or passive layer
- A.M. Sirunyan et al 2018 JINST 13 P10034

V^0 Candidates

2
$$\Lambda
ightarrow p\pi^-$$
 or $ar{p}\pi^+$

$${f 0}$$
 $c au \sim 10^{-2}$ m

Track pairs in K0 or Λ mass window are rejected

Event reconstruction : two cones

• Construct two axes from the (AK4) jets

- ► 1st Hemisphere : Take the jet of highest p_t and we associate successively the nearest jets ($\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 1.5$)
- \blacktriangleright 2nd Hemisphere : jets non-associated with the 1st hemisphere and associated within $\Delta R < 1.5$

Note : If a prompt muon belongs to a jet, its 4-vector is removed from the axis building procedure

Track selection and Vertex Reconstruction

Track selection using a Boosted Decision Tree

- ullet All Signal Samples (c $ilde{ au}=$ 10cm) tracks & Bkg ($e\mu$ data) tracks
- Association of each track to its closest hemisphere
- Implementation of a BDT to distinguish tracks from neutralino decay and tracks from background
- Define two working points (WP)
 - Tight : $\sim 10^3$ rejection of background
 - \blacktriangleright Loose : $\sim 10^2$ rejection of background

Vertex Reconstruction

Goal : Multi-step vertexing using an Iterative Adaptive Vertex Fitter (IAVF) to reconstruct one vertex per hemisphere

• 4 Steps of vertexing : two for each WP (Tight and Loose)

This workflow allows to reconstruct between 25% and 95% of the vertices (depending on the parameters) while rejecting $t\bar{t} \rightarrow \mu\mu$ + jets by a factor $\sim 10^5$

Background estimation from data

Background estimation

Combine event level information and vertex feature :

- $x_i \rightarrow$ Vertex with Loose or Tight track selection
- $x_j \rightarrow$ Hemisphere p_t

 $\rightarrow Choose$ a discriminating variable between signal and background :

Sum of the probabilities of the tracks to belong to their associated vertex

- Defined an analysis strategy in the context of the CMS experiment to look for smuon production into a long lived neutralino decaying into a top quark and two light quarks in the tracker volume
- Benefit from the large number of jets and tracks in these events to reconstruct the displaced vertices in the tracker volume and reduce the huge SM background
- Aims at putting limits on direct smuon production cross-section
- Going towards a CMS approval during next year

Conclusion

Thanks a lot !!

Back-up

Back-up

Paul Vaucelle (Université de Strasbourg) Search for displaced top quark in the tracker of the C TOP2024, Saint-Malo 27/09/2024 11/11

Track variables as input to the BDT

- For a given track with a firsthit (x1, y1, z1), we count the **number of other tracks having their firsthit within** 10, 20, 30 up to 40cm
- Impact parameters : $\left|\frac{d_{xy}}{\sigma_{xy}}\right|$, $\left|\frac{d_z}{\sigma_z}\right|$
- Others : p_t , η , n_{hits} , within a jet or not
- ΔR between the tracks and each hemisphere axis