Measurement of the t-channel single top-quark production cross section at $\sqrt{s} = 13$ TeV with the ATLAS detector and interpretations of the measurement

Maren Stratmann on behalf of the ATLAS collaboration

International Workshop on Top Quark Physics 2024

BERGISCHE UNIVERSITÄT WUPPERTAL

Measurement overview

- Measurement of the inclusive t-channel top and anti-top cross section and their ratio $R_t = \sigma_t / \sigma_{\overline{t}}$:
 - Precision measurement of the largest single top-quark production channel using the full Run 2 (140 fb⁻¹, $\sqrt{s} = 13$ TeV) dataset
 - R_t sensitive to different PDF predictions
 - Interpretations of the measurement:
 - Constrain impact of EFT operator $O_{Qa}^{3,1}$
 - Directly constrain CKM matrix elements $|V_{tx}|$
 - Paper: JHEP 05 2024 305

Event selection

- \bullet exactly one charged lepton with $p_{\rm T}(\ell)>28\,{\rm GeV}$
- exactly two jets with $p_{\rm T}(j)>$ 30 GeV and $|\eta(j)|<$ 4.5
- exactly one b-tag (60% WP, DL1r)
- $E_{\rm T}^{miss} > 30 \, {\rm GeV}$
- $m_{\rm T}(W) > 50 \, {
 m GeV}$
- $p_{\mathsf{T}}(\ell) > 40 \, \mathsf{GeV} \cdot \frac{|\Delta \Phi(j_1, \ell)|}{\pi}$
- $M(\ell b) < 160 \, \mathrm{GeV}$
- Two different signal regions separated by lepton charge

Signal region composition

ℓ^+ signal region

ℓ^- signal region

S/B = 0.27

S/B = 0.19

Total cross-section analysis overview

- Neural Network (NN) is trained to separate signal and background events
- Feed-forward NN, trained on 17 variables
- Very good discriminating power
- Cross section determined via binned maximum likelihood fit to the NN output distribution

Total cross-section results

I Courto					
	σ_t in [pb]	$\sigma_{\overline{t}}$ in [pb]	$\sigma_{\rm tch}$ in [pb]	R_t	
Result	137^{+8}_{-8}	84^{+6}_{-5}	221^{+13}_{-13}	$1.636\substack{+0.036\\-0.034}$	
NNLO prediction (PDF4LHC21)	$134.2\substack{+2.6\\-1.7}$	$80.0^{+1.8}_{-1.4}$	$214^{+4.1}_{-2.6}$	$1.677\substack{+0.010\\-0.014}$	

Results

Relative uncertainties in %

	μ_t	$\mu_{ar{t}}$	μ_{tch}	μ_{R_t}
Result	$^{+5.9}_{-5.5}$	$\substack{+6.6\\-6.2}$	$\substack{+6.1\\-5.7}$	$\substack{+2.2\\-2.1}$
NNLO prediction (PDF4LHC21)	$ ^{+1.9}_{-0.7}$	$^{+2.3}_{-1.8}$	$\substack{+1.9\\-0.9}$	$\substack{+0.6\\-0.8}$

JHEP 05 2024 305 Prediction calculated with MCFM v10.1 JHEP 02 (2021) 040

JHEP 05 2024 305

maren.stratmann@cern.ch

t-channel measurement and interpretation

EFT interpretation overview

- EFT parameterizes new physics contribution at energy scale Λ via new dimension-6 operators in the Lagrangian: $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} O_i + h.c.$
- Study the four-fermion operator $O_{Qq}^{3,1}$
- $O_{Qq}^{3,1}$ affects the top-quark production angle
 - \Rightarrow Fiducial acceptance A of t-channel events changes with $\frac{C_{Qq}^{3,1}}{\Lambda^2}$
- Quadratic dependence of $A \cdot \sigma$ on $\frac{C_{Qq}^{3,1}}{\Lambda^2}$ (arXiv:1909.13632)

Stragtegy and result

- Produced dedicated signal MC samples for different values of $\frac{C_{Qq}^{3,1}}{\Lambda^2}$
- Parameterize expected relative change of event yield as a function of $\frac{C_{Qq}^{3,1}}{\Lambda^2}$
- Use the parameterisation to perform a profile likelihood fit with $\frac{C_{Qq}^{3,1}}{\Lambda^2}$ as parameter of interest
- Extract 95% CL from a likelihood scan

Obtained 95% confidence interval: -0.37 $< \frac{C_{Qq}^{3,1}}{\Lambda^2} < 0.06$

CKM interpretation

- Goal: Measurement of CKM matrix elements V_{tb}, V_{td}, V_{ts}
- Directly accessible in top-quark production and decay
- Dedicated MC samples for t-channel and $t\bar{t}$ used
- $t\bar{t}$ treated as signal
- Number of expected signal events:

$$N_{\text{sig}} = \sum_{i=1}^{3} \sum_{j=1}^{3} N_{\text{sig},ij}, \text{ with } N_{\text{sig},ij} = \mathcal{L} \cdot \underbrace{\sigma_{i}^{t} |V_{ti}|^{2}}_{\text{prod.}} \cdot \underbrace{\mathcal{B}(t \to jW)}_{\text{decay}}$$

with production cross-section $\sigma_{i}^{t} = \sigma^{t}(V_{ti} = 1),$
Flavour indices $i, j = b, d, s$

• Limits on CKM matrix elements set via 2D likelihood scans

2D Fit Results

3 different scan scenarios:

Scenario 1
$$|V_{tb}| \neq 0$$
, $|V_{td}| \neq 0$ and $|V_{ts}| = 0$ fixed
Scenario 3 $|V_{tb}| \neq 0$, $|V_{ts}| \neq 0$ and $|V_{td}| = 0$ fixed
Scenario 2 $|V_{td}| \neq 0$, $|V_{ts}| \neq 0$ and $f_{LV}|V_{tb}| = 1$ fixed

maren.stratmann@cern.ch

- Measured the t-channel single top-quark production cross section at $\sqrt{s} = 13$ TeV, with signal modeling uncertainties as leading uncertainties
- Set constrains on EFT parameter $\frac{C_{Qq}^{3,1}}{\Lambda^2}$ as an interpretation of the measurement, obtained confidence interval: [-0.37, 0.06]
- Set constrains on CKM matrix elements V_{tb}, V_{td}, V_{ts} via 2D-likelihood scans

ATLAS

σ_t in [pb]	$\sigma_{ar{t}}$ in [pb]	$\sigma_{\rm tch}$ in [pb]	R_t
137^{+8}_{-8}	84^{+6}_{-5}	221^{+13}_{-13}	$1.636\substack{+0.036\\-0.034}$

Backup

List of NN variables

ATLAS

		, , , , , , , , , , , , , , , , , , , ,
No.	Symbol	Description
1.	m(jb)	Invariant mass of the untagged jet (j) and the <i>b</i> -tagged jet (b)
2.	$ \eta(j) $	Absolute value of the pseudorapidity of the untagged jet
3.	$ \Delta p_{\rm T}(W,jb) $	Absolute value of the difference in transverse momentum between the reconstructed <i>W</i> boson and the jet pair
4.	$\left \Delta\phi(W,jb)\right $	Absolute value of the difference in azimuthal angle between the recon- structed W boson and the jet pair
5.	m(t)	Invariant mass of the reconstructed top quark
6.	$ \Delta \eta(\ell,j) $	Absolute value of the difference in pseudorapidity between the charged lepton (ℓ) and the untagged jet
7.	$\Delta R(\ell, j)$	Angular distance of the charged lepton and the untagged jet
8.	$ \Delta \eta(b,\ell) $	Absolute value of the difference in pseudorapidity between the <i>b</i> -tagged jet and the charged lepton
9.	$m_{\mathrm{T}}(W)$	Transverse mass of the W boson
10.	$m(\ell b)$	Invariant mass of the charged lepton and the b-tagged jet
11.	$H_{\rm T}(\ell, {\rm jets}, E_{\rm T}^{\rm miss})$	Scalar sum of the transverse momenta of the charged lepton and the jets and $E_{\rm miss}^{\rm miss}$
12.	$ \Delta \eta(b, j) $	Absolute value of the difference in the pseudorapidity of the two jets
13.	$ \Delta \phi(j,t) $	Absolute value of the difference in the azimuthal angle between the untagged jet and the reconstructed top quark
14.	$\cos\theta^*(\ell,j)$	Cosine of the angle θ^* between the charged lepton and the untagged iet in the rest frame of the reconstructed top quark
15.	$ \eta(\ell) $	Absolute value of the pseudorapidity of the charged lepton
16.	S	Sphericity defined as the sum of the 2nd and 3rd largest eigenvalues of the sphericity tensor multiplied by 3/2
17.	$ \Delta p_{\rm T}(\ell,j) $	Absolute value of the difference in transverse momentum of the charged lepton and the untagged jet

JHEP 05 2024 305

Post-fit event yields

	ATLAS		
Process	SR plus	SR minus	
tq	169000 ± 6000	150 ± 150	
$ar{t}q$	90 ± 90	109000 ± 4000	
$tW + \bar{t}W, t\bar{b} + \bar{t}b$	51000 ± 4000	49000 ± 4000	
$t\bar{t}$	265000 ± 14000	265000 ± 14000	
W + $b\bar{b}$	198000 ± 21000	159000 ± 17000	
$W+c(\bar{c})$	60000 ± 13000	49000 ± 11000	
Z+jets, diboson	21000 ± 4000	19000 ± 4000	
Multijet	50000 ± 10000	50000 ± 10000	
Total	814000 ± 2100	$698800\pm\ 2000$	
Observed	814 185	698 845	
	IHEP 05 2024 305	-	

maren.stratmann@cern.ch

Impact of systematic uncertainties

		ATLAS		
Uncertainty group	$\Delta\sigma(tq)/\sigma(tq)$	$\Delta\sigma(\bar{t}q)/\sigma(\bar{t}q)$	$\Delta\sigma(tq+\bar{t}q)/\sigma(tq+\bar{t}q)$	$\Delta R_t/R_t$
Data statistics	+0.4 / -0.4	+0.5 / -0.5	+0.3 / -0.3	+0.6 / -0.6
Signal modelling	+4.9/-4.5	+5.2/-4.8	+5.0 / -4.6	+0.9 / -0.9
Background modelling	+1.8 / -1.6	+2.1 / -1.9	+1.8 / -1.6	+1.5 / -1.4
MC statistics	+1.0 / -1.0	+1.4 / -1.3	+1.1 / -1.0	+0.8 / -0.8
PDFs	+0.4 / -0.4	+1.2 / -1.0	+0.6 / -0.6	+0.9 / -0.8
Jets	+2.2 / -2.0	+3.0 / -2.7	+2.5 / -2.2	+1.0 / -0.9
b-tagging	+1.6/-1.5	+1.7 / -1.5	+1.6 / -1.5	+0.2 / -0.1
Leptons	+1.1 / -1.0	+1.1 / -1.0	+1.1 / -1.0	+0.1 / -0.1
Luminosity	+0.9 / -0.8	+0.9 / -0.9	+0.9 / -0.8	< 0.1
Total	+5.9 / -5.5	+6.6 / -6.2	+6.1 / -5.7	+2.2 / -2.1
		JHEP 05 2024 305		

Comparison with PDF sets

EFT interpreation: Strategy

•
$$A \cdot \sigma$$
 depends on $\frac{C_{Qq}^{3,1}}{\Lambda^2}$ (arXiv:1909.13632):
 $A \cdot \sigma = A^{SM}\sigma^{SM} + A^{Interf}\sigma^{Interf}\frac{C_{Qq}^{3,1}}{\Lambda^2} + A^{BSM}\sigma^{BSM}\frac{(C_{Qq}^{3,2})}{\Lambda^4}$
 \Rightarrow Yield_{total} of the EFT samples can be written as:
Yield_{total} = Yield_{SM} + Yield_{Interf} + Yield_{BSM}
with Yield_{Interf} $\propto \frac{C_{Qq}^{3,1}}{\Lambda^2}$ and Yield_{BSM} $\propto (\frac{C_{Qq}^{3,2}}{\Lambda^2})^2$

• Parameterize relative change of event yield as a function of $\frac{C_{Qq}^{3, \cdots}}{\frac{1}{2}}$

- Apply the NN of the main analysis to the EFT samples to create D_{nn} distributions
- For each bin i of the D_{nn} distributions:
 - Get event yield in bin i for each $\frac{C_{Qq}^{3,1}}{\Lambda^2}$ value
 - Fit quadratic function $f_i(\frac{C_{Qq}^{3,1}}{\Lambda^2}) = p_{SM,i} + p_{Interf,i} \cdot \frac{C_{Qq}^{3,1}}{\Lambda^2} + p_{BSM,i} \cdot (\frac{C_{Qq}^{3,1}}{\Lambda^2})^2$
- Normalize $f_i(\frac{C_{Qq}^{\mathbf{3},\mathbf{1}}}{\Lambda^2})$ to $p_{SM,i}$

EFT interpreation: Profile likelihood fit

• TRExFitter fit setup:

- Split nominal t-channel MC samples in
 - 12 seperate samples (one per NNout bin)
- Use respective normalized $f_i(C_{Qq}^{3,1})$ as NormFactor $C_{Qq}^{3,1}$
 - $\Rightarrow \frac{C_{Qq}^{\mathbf{3},\mathbf{1}}}{\Lambda^2}$ is not fitted directly,
 - only via the quadratic expressions
- General fit setup from the main analysis is used (definition of signal regions, systematic uncertainties ...)
- Single-top and single-antitop processes are scaled to theory prediction of respective cross section, the theory uncertainties are applied as systematic uncertainties

Literature $\frac{C_{Qq}^{3,1}}{\Lambda^2}$

- Results for $\frac{C_{Qq}^{3,1}}{\Lambda^2}$ obtained in published analyses
 - Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC (arXiv:2105.00006)
 - Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory 2 (arXiv:2012.02779)
 - O new physics, where art thou? A global search in the top sector (arXiv:1910.03606) 3
 - Our result

Source	95% CL linear fit		95% CL q	uadratic fit
	Individual	Marginalized	Individual	Marginalized
1.	[-0.099, 0.155]	[-0.163, 0.296]	[-0.088, 0.166]	[-0.167, 0.197]
2.	[-0.043, 0.16]	[-0.071, 0.17]	-	-
3.	-	-	[-0.25, 0.05]	[-0.39, 0.11]
4.	-	-	[-0.37,0.06]	-

CKM Branching ratios

Branching ratios can be written as:

$$egin{aligned} \mathcal{B}(t o bW) &= R = rac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{td}|^2 + |V_{ts}|^2} \ \mathcal{B}(t o dW) &= R_d = rac{|V_{td}|^2}{|V_{tb}|^2 + |V_{td}|^2 + |V_{ts}|^2} \ \mathcal{B}(t o sW) &= R_s = rac{|V_{ts}|^2}{|V_{tb}|^2 + |V_{td}|^2 + |V_{ts}|^2} \end{aligned}$$

CKM signal events

Full parametrisation of the signal events:

Г

$$\begin{split} \mathcal{N}_{\mathrm{t-chan}} &= \mathcal{L} \cdot R \left[\underbrace{\frac{\mu_b \cdot \sigma_b}{\mathrm{Vtb} \mathrm{Vtb}} + \underbrace{\mu_d \cdot \sigma_d}{\mathrm{Vtd} \mathrm{Vtb}} + \underbrace{\frac{\mu_s \cdot \sigma_s}{\mathrm{Vts} \mathrm{Vtb}}}_{\mathrm{Vtb} \mathrm{Vtb}} + \underbrace{\left(\frac{1 - R - R_d}{R}\right) \cdot \mu_b \cdot \sigma_b}_{\mathrm{Vtb} \mathrm{Vts}} + \underbrace{\left(\frac{1 - R - R_s}{R}\right) \cdot \mu_d \cdot \sigma_d}_{\mathrm{Vtb} \mathrm{Vtd}} + \underbrace{\left(\frac{1 - R - R_s}{R}\right) \cdot \mu_s \cdot \sigma_s}_{\mathrm{Vts} \mathrm{Vtd}} + \underbrace{\left(\frac{1 - R - R_d}{R}\right) \cdot \mu_s \cdot \sigma_s}_{\mathrm{Vts} \mathrm{Vtd}} + \underbrace{\left(\frac{1 - R - R_d}{R}\right) \cdot \mu_d \cdot \sigma_d}_{\mathrm{Vts} \mathrm{Vts}} \right], \end{split}$$