Mapping the SMEFT at High-Energy colliders

Based on SMEFiT3.0 [\[arXiv:2404.12809\]](https://arxiv.org/pdf/2404.12809) with T. Giani, J. ter Hoeve, L. Mantani, J. Rojo, A. N. Rossia, M. Thomas, E. Vryonidou

> **Top 2024, Saint-Malo, Brittany, France 24/09/24**

Eugenia Celada University of Manchester

The University of Manchester

Eugenia Celada - Top 2024 ¹

The special role of top

- Lots of top measurements, but no deviation with the SM detected so far
- New physics searches require a general approach

Eugenia Celada - Top 2024 ²

The special role of top

- Lots of top measurements, but no deviation with the SM detected so far
- New physics searches require a general approach
- **Standard Model Total Production Cross Section Measurements** [ad] 10^{11} \overline{O} **ATLAS** Preliminary Theory LHC pp \sqrt{s} = 13.6 TeV \overline{b} \sqrt{s} = 5,7,8,13,13.6 TeV 10^{6} $29.0 - 31.4$ fb $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ $10⁵$ $a \ 3.2 - 140$ fb $+0$ $= 8$ TeV ata $20.2 - 20.3$ fb $10⁴$ \sqrt{s} – 7 TeV Data $45 - 46$ fh $10³$ LHC pp. $\sqrt{s} = 5$ TeV ata $0.255 - 0.3$ fb $10²$ $10¹$ \blacksquare VBI ¹ 10^{-1} 10^{-2} $t\bar{t}$ zz

- Top plays a special role in the SM
	- largest fermion mass
	- largest Yukawa coupling
	- top-loop effects are crucial in Higgs and EW processes
	- Cross-talk between different sectors (Higgs, top, EW) requires a global analysis

Status: June 2024

[arXiv: 1804.09766]

SMEFT global fits

• The SMEFT reveals high energy physics effects through precise measurements at low energy

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \mathcal{O}(\Lambda^{-3})
$$

$$
\sigma = |\mathcal{M}_{\text{SM}}|^2 + \frac{1}{\Lambda^2} \left(\sum c^{(6)} 2 \text{Re}[\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{EFT}}^{(6)}] \right) + \frac{1}{\Lambda^4} \left(\sum c^{(6)} \mathcal{M}_{\text{EFT}}^{(6)} \right)
$$

- Ideal framework to look for overall pattern in global fits
- Large number of operator coefficients, many datasets needed to break degeneracies

[Fitmaker Collaboration \[arXiv:2012.02779\]](https://arxiv.org/pdf/2012.02779) [Anke Biekötter - HET seminar Brookhaven](https://indico.bnl.gov/event/14918/attachments/41472/69484/EFT_Biekoetter_BNL.pdf)

SMEFiT3.0: a summary

 c_{Qt}^1

 $c^1_{Q\bar{Q}}$

 c_{QQ}^8

• Extension of SMEFIT2.0 with recent LHC Run-II datasets on top, diboson and Higgs production [arXiv:2105.00006]

 c_{tt}^1

 c_{Qt}^8

 $c_{qq}^{1,8}$

 $c_{qq}^{1,1}$

- Exact treatment of LEP and SLD Electroweak Precision Observables (EWPOs)
- Projections for HL-LHC pseudodata extrapolated from Run-II data
- FCC-ee and CEPC pseudodata from Snowmass predictions updated with FCC midterm Feasibility Report [arXiv:[2206.08326\]](https://arxiv.org/abs/2206.08326) [CERN/3789/RA]
- Results for LHC Run-II and future colliders in terms of Wilson coefficients and UV-complete models [arXiv:[2309.04523\]](https://inspirehep.net/literature/2696156)

• Public code, data and theory: results are fully reproducible [lhcfitnikhef.github.io/smefit_release/] Eugenia Celada - Top 2024 0.0 0.2 -2.5 0.0 2.5 -0.2 0.2 -0.1 0.0 0.1 -10 θ -0.02 0.00

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Theory

SM: (N)NLO QCD + NLO EW

EFT: **NLO QCD**, linear and quadratics, with SMEFT@NLO

NNPDF4.0 no top

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

SMEFIT Giani, Magni, Rojo, a[rXiv:2302.06660](https://arxiv.org/abs/2302.06660)

Theory

SM: (N)NLO QCD + NLO EW

EFT: **NLO QCD**, linear and quadratics, with SMEFT@NLO

NNPDF4.0 no top

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Giani, Magni, Rojo, a[rXiv:2302.06660](https://arxiv.org/abs/2302.06660)

SMEFIT

Methodology

Linear fit: Analytical solution Quadratic fit: Nested sampling (Bayesian inference)

SM: (N)NLO QCD + NLO EW

EFT: **NLO QCD**, linear and quadratics, with SMEFT@NLO

NNPDF4.0 no top

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Giani, Magni, Rojo, a[rXiv:2302.06660](https://arxiv.org/abs/2302.06660)

SMEFITS

Methodology

Linear fit: Analytical solution Quadratic fit: Nested sampling (Bayesian inference)

Output

Automatised fit report with **bounds** on coefficients, posterior distributions, PCA, Fisher information…

Experimental input

Extension of SMEFIT2.0 with recent LHC Run-II datasets on top, diboson and Higgs production

[SMEFiT3.0: EC, Giani, ter Hoeve, Mantani, Rojo, Rossia, Thomas, Vryonidou \[arXiv:2404.12809\]](https://arxiv.org/abs/2404.12809) [SMEFiT2.0: Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang \[arXiv:2105.00006\]](https://arxiv.org/abs/2105.00006)

118 data points

Eugenia Celada - Top 2024 and a control control of the G

Theory input: operators

- Warsaw basis of dim-6 SMEFT operators
- Flavour symmetry: • + Yukawa of bottom, charm and tau $U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_l \times U(1)_e)^3$

Operator Coefficient Operator Coefficient Definition 3rd generation quarks $c^{(1)}_{\varphi Q}$ (*) $i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi)(\overline{Q} \gamma^{\mu} Q)$ ${\cal O}^{(1)}_{\varphi Q}$ $i(\bar{Q}\tau^{\mu\nu}\tau_{I}t)\tilde{\varphi}W_{\mu\nu}^{I} + \text{h.c.}$ \mathcal{O}_{tW} c_{tW} ${\cal O}^{(3)}_{\varphi Q}$ $c_{\varphi Q}^{(3)}$ $i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$ $i(\bar{Q}\tau^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} + \text{h.c.}$ \mathcal{O}_{tB} c_{tB} $(*)$ $i\bigl(\varphi^\dagger \,{\stackrel{\leftrightarrow}{D}}_\mu\,\varphi\bigr)\bigl(\bar t\,\gamma^\mu\,t\bigr)$ $\mathcal{O}_{\varphi t}$ igs $(\bar{Q}\tau^{\mu\nu}T_{A}t)\tilde{\varphi}G^{A}_{\mu\nu}+\text{h.c.}$ \mathcal{O}_{tG} $c_{\varphi t}$ c_{tG} $(\varphi^{\dagger} \varphi) \bar{Q} t \tilde{\varphi} + \text{h.c.}$ $\mathcal{O}_{t\varphi}$ $\mathcal{O}_{b\varphi}$ $c_{t\varphi}$ $c_{b\varphi}$ 1st, 2nd generation quarks $\overline{\sum_{i=1,2,3}^{\qquad \ \ i}i\big(\varphi^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\varphi\big)\big(\bar{d}_i\,\gamma^{\mu}\,d_i\big)}$ $\sum\limits_{i=1,2}i\bigl(\varphi^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\varphi\bigr)\bigl(\bar{q}_i\,\gamma^{\mu}\,q_i\bigr)$ ${\cal O}^{(1)}_{\varphi q}$ $c_{\varphi q}^{(1)}$ (*) $\mathcal{O}_{\varphi d}$ $c_{\varphi d}$ $\sum_{i=1,2} i\bigl(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \, \tau_{I} \varphi\bigr) \bigl(\bar{q}_{i} \, \gamma^{\mu} \, \tau^{I} q_{i}\bigr) \bigg\vert \, \mathcal{O}_{c\varphi} \, .$ $c_{\varphi q}^{(3)}$ $\mathcal{O}^{(3)}_{\omega a}$ $(\varphi^{\dagger} \varphi) \bar{q}_2 c \tilde{\varphi} + \text{h.c.}$ $c_{c\varphi}$ $\sum_i i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u}_i \gamma^{\mu} u_i)$ ${\cal O}_{\varphi u}$ $c_{\varphi u}$ two-leptons $i\big(\varphi^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\varphi\big)\big(\bar{\mu}\,\gamma^{\mu}\,\mu\big)$ $i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\overline{\ell}_i \gamma^{\mu} \ell_i)$ ${\cal O}_{\varphi \ell_i}$ $\mathcal{O}_{\varphi\mu}$ $c_{\varphi \ell_i}$ $c_{\varphi\mu}$ ${\cal O}^{(3)}_{\varphi \ell_i}$ $c_{\varphi \ell_i}^{(3)}$ $i\big(\varphi^\dagger\overset{\leftrightarrow}{D}_\mu\tau_{\scriptscriptstyle{I}}\varphi\big)\big(\bar\ell_i\,\gamma^\mu\,\tau^{\scriptscriptstyle{I}}\ell_i\big)$ $i\big(\varphi^{\dagger} \overset{\leftrightarrow}{D}_\mu \varphi\big) \big(\bar\tau \, \gamma^\mu \, \tau \big)$ $\mathcal{O}_{\varphi\tau}$ $c_{\varphi\tau}$ $i(\varphi \dagger \overleftrightarrow{D}_{\mu} \varphi)(\overline{e} \gamma^{\mu} e)$ $(\varphi^{\dagger} \varphi) \bar{\ell}_3 \tau \varphi + \text{h.c.}$ $\mathcal{O}_{\tau\varphi}$ $\mathcal{O}_{\varphi e}$ $c_{\varphi e}$ $c_{\tau\varphi}$ four-leptons $(\bar{\ell}_1 \gamma_\mu \ell_2) (\bar{\ell}_2 \gamma^\mu \ell_1)$ $\mathcal{O}_{\ell\ell}$ $c_{\ell\ell}$

Simultaneous fit of 50 Wilson coefficients

Eugenia Celada - Top 2024 and a series and series and series of \sim

- Most bounds below 1 for $\Lambda = 1$ TeV
- Quadratic terms important (mostly 2 light-2-heavy)
- Least constrained are 4-heavy operators

• Fit residuals (pulls) largely consistent with the SM

$$
P_i \equiv 2\left(\frac{\langle c_i \rangle - c_i^{\rm (SM)}}{\left[c_i^{\rm min}, c_i^{\rm max}\right]^{68\% \rm ~CI}}\right)
$$

• Fit residuals (pulls) largely consistent with the SM

$$
P_i \equiv 2\left(\frac{\langle c_i \rangle - c_i^{\text{(SM)}}}{\left[c_i^{\min}, c_i^{\max}\right]^{68\% \text{ CI}}}\right)
$$

Large correlations in the linear fit are lifted in the quadratic fit

• Fit residuals (pulls) largely consistent with the SM

$$
P_i \equiv 2\left(\frac{\langle c_i \rangle - c_i^{\rm (SM)}}{\left[c_i^{\rm min}, c_i^{\rm max}\right]^{68\%} {}^{\rm CI}}\right)
$$

Large correlations in the linear fit are lifted in the quadratic fit

Impact of new datasets

Prospects at future colliders

International **UON Collider** Collaboration

HL-LHC results

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

HL-LHC results

$$
R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline + HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline)}}\
$$

- L1 projections of Run II datasets
	- pseudodata fluctuated around SM theory
	- statistics rescaled by luminosity
	- systematics reduced by a factor 2

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

HL-LHC results

$$
R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline} + \text{HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline)}}
$$

- L1 projections of Run II datasets
	- pseudodata fluctuated around SM theory
	- statistics rescaled by luminosity
	- systematics reduced by a factor 2
- marginalised bounds improve by a factor 1.2-3
- individual bounds are overly optimistic
- 2-light-2-heavy improved by 30% (further improvement of a factor 2 expected with a dedicated binning)

[arXiv:2206.08326] [arXiv:2205.02140] Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Future circular lepton colliders

- Dataset input
	- EWPOs at the Z pole
	- light fermion pair production
	- Higgs production (Higgstrahlung and VBF)
	- diboson (WW) production
	- top pair production
- Uncertainty projections from Snowmass study updated with FCC midterm Feasibility Report [arXiv:2206.08326]

[CERN/3789/RA]

FCC-ee results

$$
R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline + HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline)}}\
$$

- gauge operators improve of up to a factor 30
- 2-fermion operators improve of up to a factor 50
- no sensitivity to 4-quark operators: improvement only from marginalisation

further improvement expected from one loop corrections

[see for instance arXiv: [1809.03520,](https://arxiv.org/pdf/1809.03520) arXiv: [2409.11466](https://arxiv.org/pdf/2409.11466)] Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Fisher information

• The Fisher information matrix quantifies which dataset is most sensitive to a EFT parameter (each row is normalised by 100)

$$
I_{ij} = \sum_{m=1}^{n_{\rm dat}} \frac{\sigma_{m,i}^{(\rm eft)}\sigma_{m,j}^{(\rm eft)}}{\delta_{\rm exp,m}^2}\,, \qquad i,j=1,\ldots,n_{\rm eft}
$$

• neglects correlations and quadratic effects

- HL-LHC dominates in the 2-light-2-heavy and 4-heavy sectors
- FCC-ee dominates in the bosonic and 2 fermion sector
- FCC-ee run at 161 GeV is the less useful for SMEFT

Conclusions & outlook

- SMEFT is a consistent way to look for new interactions
- Global fits need to combine all the processes available at LHC
- **SMEFIT3.0 in the biggest global SMEFT analysis to date:** 50 Wilson coefficients and 445 datapoints
- Significant improvement in New Physics reach expected at HL-LHC and at future circular lepton colliders
- **Extension to other future colliders** (ILC, CLIC, muon collider) and **RG running** in progress
- Code, data and theory are public and available at \bigodot Ihcfitnikhef.github.io/smefit_release/

Backup

EWPOs exact implementation

- In the SMEFT, Z and W fermionic coupling receive contributions from dim-6 operators
- **SMEFIT2.0:** assume LEP/SLD measurements precise enough to set coupling shift to 0
	- only 2 independent Wilson coefficients

• **SMEFIT3.0:** EWPOs implemented like the rest of LHC data • 16 independent Wilson coefficients

no major difference, but the approximate implementation resulted in too stringent constraints on some EW operators

New LHC datasets

L0 vs L1 projections

• Level-0: no fluctuation of the pseudo-data

$$
\mathcal{O}_i^{(\exp)} = \mathcal{O}_i^{(\mathrm{th})}\,, \qquad i = 1, \ldots, n_{\mathrm{bin}}
$$

- Level-1:
	- pseudodata fluctuated around SM

$$
\mathcal{O}_i^{(\exp)} = \mathcal{O}_i^{(\text{th})} \left(1 + r_i \delta_i^{(\text{stat})} + \sum_{k=1}^{n_{\text{sys}}} r_{k,i} \delta_{k,i}^{(\text{sys})} \right), \qquad i = 1, \dots, n_{\text{bin}}
$$

• statistics rescaled by luminosity

$$
\delta_i^{(\rm stat)} = \tilde{\delta}_i^{(\rm stat)} \sqrt{\frac{\mathcal{L}_{\rm Run2}}{\mathcal{L}_{\rm HLLHC}}}
$$

• systematics reduced by a factor $f_{\text{red}}^{(k)} = 1/2$

$$
\delta_{k,i}^{\text{(sys)}} = \tilde{\delta}_{k,i}^{\text{(sys)}} \times f_{\text{red}}^{(k)}, \qquad i = 1, \ldots, n_{\text{bin}}, \quad k = 1, \ldots, n_{\text{sys}}
$$

Good agreement found between the two approaches.

FCC-ee and CEPC

 $\begin{array}{ccccc} & & c_{Qq}^{3,8} & c_{Qq}^{1,1} & c_{Qq}^{1,8} & c_{\varphi D} & c_{\varphi\Box} \ & c_{Qq} & & c_{\varphi\Box} & c_{WWW} & c_{\varphi WB} \end{array}$ c_{tq}^8 c_{tq}^1 $c_{\varphi W}$ c_{tu}^8 $c_{\varphi B}$ c_{tu}^1 $c_{\varphi G}$ 080604 c_{Qu}^8 c_{ll} 0.40.8 0.2 c^1_{Qu} $\mathbf{0.1}$ $c_{\varphi\tau}$ 0.2 0.05 \mathbf{C} 0.05 c_{td}^8 $c_{\varphi\mu}$ 0.01 0.63 c_{td}^1 0.005 $c_{\varphi e}$ $c_{\varphi l_3}^{(3)}$ c_{Qd}^8 0.01 $c_{\varphi l_2}^{(3)}$ c^1_{Qd} $c_{\varphi l_1}^{(3)}$ $c_{c\varphi}$ 0.05 $c_{b\varphi}$ $c_{\varphi l_3}$ 0.1 $c_{t\varphi}$ $c_{\varphi l_2}$ 0.2 $c_{\tau \varphi}$ $c_{\varphi l_1}$ 0.4 0.6 $c_{\varphi t}$ c_{tG} 0.8 $c_{\varphi d}$ c_{tW} $c_{\varphi u}$ c_{tZ} $c^{(3)}_{\varphi Q} \quad c^{(-)}_{\varphi q} \quad c^{(-)}_{\varphi Q}$ $c_{\varphi q}^{(3)}$ **SMEFIT** HL -LHC + FCC-ee $-$ HL-LHC + CEPC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

FCC-ee energy breakdown

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

Study the impact of sequentially adding different runs

- largest impact from 91 + 240 GeV combination
- 365 GeV also relevant

