TOP 2024 – 17th International Workshop on Top Quark Physics, Saint-Malo

Object Reconstructions in ATLAS Highlights on Latest Developments for LHC Run 3

Geoffrey Gilles on behalf of the ATLAS Collaboration NIKHEF - Dutch National Institute for Subatomic Physics

Nikhef

Introduction

OBJECT SIGNATURES FOR TOP PHYSICS

3

• Dominant (99.8%) top-quark decay $t \rightarrow W^+ b$

• Topologies dominated by *W* decay modes

- Nearly all object signatures are important
 - Charged leptons e^{\pm} , μ^{\pm} (and τ^{\pm})
 - Jets, b-tagged jets and large-R jets
 - Missing energy from neutrinos
 - γ in $t\bar{t}\gamma$ / $tq\gamma$ or fakes in multi-lepton channels

Candidate four-top-quark event from data collected by ATLAS in 2016

RUN 3 UPGRADE

 Significant hardware upgrade during LHC LS2 to enhance trigger capabilities & maintain excellent performance under increased pile-up conditions

Nik[hef

Inner Tracking & Muon reconstruction

Software & Performance Improvements

TRACKING SOFTWARE IMPROVEMENT

- ATLAS reconstruction software significantly updated
 - Faster decision-making with stricter tolerances and improved algorithms information sharing
 - Early rejection of non-promising tracks and muon candidates
 - Additional large- d_0 tracking pass (LRT) for displaced tracks from long-live particle within ID

6

MUON RECONSTRUCTION & CALIBRATION

- Muons reconstructed separately in ID and MS, where combined tracks (CB) mostly produced
 - Different Isolation WPs determined from prompt resonances (Z or $J/\psi \rightarrow \mu^+\mu^-$), using ID+MS or CB
 - NSW commissioned & included in data tacking with significant eff. improvements measured in 2023
- First calibration on new Run 3 dataset now available
 - Innovative approach correcting charge-dependent momentum bias from detector alignment effects

Electrons / γ

Identification, Isolation & Energy Calibration

ELECTRONS / γ IDENTIFICATION & ISOLATION

- Identification based on ID and EM Calo. information with high eff. and good bkg rejection
 - Likehood (LH) based approach currently used & exploratory studies on DNN/GNN methods ongoing
- Prescriptions from latest Run 2 precision measurements to benefit to Run 3 analyses
 - Improved approach & more data reduced prompt-electron (γ) id. Efficiency uncert. by 30-50% (30-40%)
 - Optimizing bkg subtraction, combining measurements & refining pile-up contamination subtraction

ELECTRONS / γ ENERGY CALIBRATION

- Run 2 legacy precision measurements
 - Re-evaluated uncertainty sources and new methods introduced to reduce their impact
 - Enhanced calo cells / layers calibration, better meas. of lateral energy leakage & energy linearity
 - Overall calibration uncertainty reduced by 2-3x \rightarrow 0.05% for *e* at Z peak, 0.2% for γ at $E_T \sim 60$ GeV
- Run 3 challenge \rightarrow pile-up uncertainty dominate *E* res. at E_T >100 GeV, will keep increasing

Hadronic Jets

Reconstruction, Calibration, Flavour-tagging, Large-R jets

JET RECONSTRUCTION & CALIBRATION IN A NUTSHELL

• Hadronic jets are clustered using anti-kt algorithm upon

12

- Particle Flow Objects (PFOs) → Combined track and calorimeter information IP Small-R jets (R=0.4)
- Unified Flow Objects (UFOs) \rightarrow Improved PFOs using track to split up large clusters based on \square Large-R jets the energy flow and their direction, improving jet mass resolution at high p_T (R=1.0)
- Jets are calibrated with series of simulation-based corrections & in-situ calibrations
 - Pile-up corrections, jet 4-mom matching to particle-level E, reduce flavour dep. / E leakage & residual calib. to data

Eur. Phys. J. C 81 (2021) 689 Eur. Phys. J. C 81 (2021) 334 JETM-2023-05

JET RECONSTRUCTION & CALIBRATION IN A NUTSHELL

13

IMPROVING CALORIMETER TOPO CLUSTURING

- Topological clustering based on seeding cells of energy significance $|E|/\sigma_E > 4$
- Cell-time selection |t| < 12.5 ns now applied to seeding cells
 - Suppress ~60% of out-of-time pile-up jets while retaining in-time signals at $p_T = 20 \text{ GeV}$
 - Avoid rejecting phase space potentially sensitive to long-lived particles with higher significance
- New calibration based on ML regression techniques competing historical LCW method

PROGRESS IN GLOBAL & IN SITU CALIBRATIONS

- Global Neural Network Calibration (GNNC) introduced as an alternative to GSC method
 - DNN learning on correlated jet observables, improving resolution by 15-25% & JES closure at low p_T
- New "E/p" JES in situ calibration from single particle measurements with $W \rightarrow \tau v$ events
 - Precise measurement by shifting & smearing each jet particle by calorimeter response & uncertainties extended up to $p_T = 300 \text{ GeV}$
- New b-JES calibration based on Transformers for PFlow and UFO large-R jets
 - Improving p_T resolution by 18-31% for small-R jets & mass/ p_T resolutions by 25-35% for large-R jets

NEW FLAVOUR-TAGGING PARADIGM FOR RUN 3

- ATLAS experienced profound technological evolutions with novel "GNX" class algorithms
 - Jet flavour, vertexing & track origin task inferred simultaneously using GNN/Transformer networks
 - Improved performance & interpretability

Pooled graph

Nik

NEW FLAVOUR-TAGGING PARADIGM FOR RUN 3

CHALLENGES IN BOOSTED TOP TAGGING

- Identifying top-quark decays in high- p_T regime, essential for SM meas. & BSM searches
- Constituent-based taggers using advanced ML emerged as the most accurate algorithms
 - But significant systematic uncertainties, especially in theoretical modelling, could limit effectiveness
 - Reducing uncertainties without compromising performance is a key research direction at Run 3

ParticleNet: GNN algorithm PFN: DeepSets-based Particle Flow Network algorithm hIDNN: DNN algorithm learning from high-level jet constituent kinematics

NOVEL DNN-BASED LARGE-R JETS CALIBRATION

- New joint energy and mass calibration of UFO large-R jets
 - Innovative single-correction-step approach exploiting all shower observables and correlations
 - JER closer to unity & resolution significantly improved compared to standard calibration
 - Jet-mass response for boosted W/Z, H, top also improved

Miscellaneous

Missing Energy & Tau Leptons

MISSING TRANSVERSE MOMENTUM RECONSTRUCTION

- Complex reconstruction task well understood & reliable modelling by simulation
 - Double momentum counting avoided with signal ambiguity resolution procedure
 - Managing high pile-up conditions impact, with recent 30% improvement of p_T^{miss} resolution
 - Soft-term scale and resolution uncertainties reduced by 76% and 51%, respectively

ML FOR au RECONSTRUCTION AT RUN 3

- New ML algorithms series aiming at reconstructing, identifying & calibrating hadronic au decays
 - Reconstruction, identification & electron rejection algorithm employ RNN
 - Energy calibration based on BRT combining calorimetric energy & tracking momentum information
 - Decay mode class. algorithms based on DeepSets to differentiate between 5 au decay topologies

Conclusions

CONCLUSIONS

Significant advancements across all combined-performance sectors for Run 3

- Enhanced reconstruction algorithms with advanced ML techniques playing a critical role
- Legacy Run 2 precision provides a robust and stable framework for efficiency measurements
- Expected boost in sensitivity for a wide range of top-physics analyses
- Focused efforts on pile-up mitigation in the challenging Run 3 environment
 - Hardware upgrades including new Level-1 trigger system & NSW integration for muons
 - Introduction of innovative techniques to reduce pile-up contamination
- Promising preliminary results from the first Run 3 datasets
 - Ongoing commissioning of Run 2 reconstruction and calibration methods
 - Extensive collaboration-wide contributions to ensure precision measurement readiness

Thank you for your attention