

Run 3 detector performance and object reconstruction at CMS

September 23, 2024

Jieun Choi On behalf of the CMS collaboration

ji.eun.choi@cern.ch

TOP 2024 @ Saint-Malo

Outline

Outline

Where we are at data taking

Cumulative luminosity in CMS

- Luminosity delivered to CMS by the end of Run2 is > 190 /fb
- Luminosity delivered in Run3 is > 160 /fb
 - 1.3% of uncertainty in 2023
- Average number of pp interactions per crossing in Run3 is > 50

CMS

CMSPublic/LumiPublicResults

CMS-DP-2024-068

The Known Issues in Run 3

Pictures taken from <u>2019 J. Phys.: Conf. Ser. 1162 012007</u> CERN-LHCC-2012-016

"ECAL power cooling issue"

- Early September 2022
- ~7% of the positive side of the ECAL (EE+ water leak region) had turned off
- Due to cooling limitations caused by a water leak
 - problems-and-solutions-ecal-leak-story

"BPix issue"

- 19-24 June 2023 (After Technical Stop 1)
- 27 modules (~1.5%) in the Barrel Pixel Layers 3 and 4 became inoperable
- They cover a sector spanning approximately 0.4 radius (~23 degrees) in phi at negative pseudorapidity
- Due to issue in distributing the LHC clock signals

From known issues to Jet

Affected regions in Jet

- ECAL power cooling issue
 - mis-reconstruction of electrons and jets in the affected region
 - Events to be vetoed
- BPix issue
 - Inefficiency in the track reconstruction in a small region with implications for the jet energy scale (JES)
 - Events to be included

Addressing BPix issue to JES

- Comparison from ϕ -dependent vs inclusive correction
 - ϕ -inclusive corrections
 - a drop in the response of up to 6% is observed in the affected ϕ region
 - ϕ -dependent corrections
 - $-1.22 < \phi < -0.78$
 - a closure within 1% is obtained in most of the analyzed phase space

Jet Energy Performance

PileUp mitigation

Pileup (PU) particles can overlap with jet candidates

Charged Hadron Subtraction (CHS) ; Run2 default

- A majority of PU is from charged particles!
- Removed charged particles originating from PU vertices
- Only works within the tracker covered region
- Does not remove neutral PU contribution

PileUp Per Particle Identification (PUPPI) ; Run3 default

- Intended to remove PU + identify PU at particle level
- Event-by-event basis weights for each particle if they are PU-like
- Used to re-scale the four momenta of the particles
- Jet+MET, jet substructure variables are expected to be less susceptible to PU

Jet Energy Performance

Jet Energy Scale

Residual correction

- Jet energy corrections are applied to the reconstructed-level jets
 - η -dependent correction (different response from each subdetector) + p_T -dependent correction (scale difference in central)
- Great performance in the barrel region (correction < 2%)
- Stable difference between data and simulation in 2022
 - Similar performance to Run 2 legacy reconstruction in $50 < p_T < 500$ GeV

Jet Energy Resolution

Smearing

- Jet energy resolution (JER) in simulation needs to be smeared to match that of data
 - Defined as the spread of the response distribution; gaussian fit
 - SFs are extracted using data-based methods
- Prompt construction in $|\eta| < 2.5$ outperforms legacy Run2
- The imperfect calibration of overlapping sub-detectors (2.5 < $|\eta|$ < 3) leads to larger SFs

Jet Energy Resolution

p_T regression

- ML based algorithm ParticleNet
 - Jet classification
 - Jet p_T regression
 - Jet energy resolution estimation
- First full calibration of flavor-aware regressed p_T for small-cone jets
 - Correcting raw jet p_T to the truth-level
- Significant resolution improvement ~ 15%
- Calibration with data gives a non-closure of 2-5 % in $|\eta| < 2.5$

Heavy flavor tagging in CMS

Picture taken from 2018 JINST 13 P05011

The evolution of Jet taggers

Run 2

- Shallow ML: BDTs or feedforward NNs
- Deep ML: sequence-based deep NNs

Run 3

- Particle Clouds: Graph Neural Networks
- Transformers: Attention model

Extension to a unified approach

- From Transformer Model (Particle Transformer)
 - Based on the "Attention" model designed for particles
 - Not only single particle information, but also pair-wise features
- To Unified Particle Transformer (UParT)
 - b / c jet identification
 - Hadronic tau + s-tag (!)
 - Simultaneous flavor aware jet energy/resolution regression

Discrimators are determined:

$$XvsY = \frac{P(X)}{P(X) + P(Y)}$$

Flavor Tagging Performance

b/c-tagging performance

- Promising performance compared to previous taggers
 - ~ ~5% better b-tag efficiency than DeepJet having the same misidentification rate at 1%
 - The highest/comparable c-tag efficiencies compared to the previous taggers

Flavor Tagging Performance

15

b/c-tagging performance

- Promising performance compared to previous taggers
 - ×3 better light jet rejection (at b-jet eff 70%) than DeepJet
 - ×2 better light rejection + ×2 better b-jet rejection (at c-jet eff 35 %) than DeepJet

Data vs Simulations

Commissioning

- Disagreement due to mismodelling in simulations
 - input variables \rightarrow output discriminator
- Prone to changes in the calibration of the detector alignment
- Only small differences in b-tag output discriminator for different data taking period in Run3
 - Performed in CvsL and CvsB as well

Calibrations

- Scale-Factors defined from efficiencies for a jet with flavor in data / simulation

units

- Define heavy flavor enriched data for SF derivation
 - Phase space dedicated to class
- Good Data vs MC closure after applying SFs
- Performance changed after SFs application
- No public results in c-tagging yet

CMS-DP-2024-024

CMS-DP-2024-025 arXiv:211.03027

16

Lepton Performance

Muon performance

- Good data-to-simulation performance for Muon identification
- Stable isolation performance

Electron Performance

- Minimal inefficiency in BPix failure region
- A BDT-based (XGBoost) multivariate optimization is performed to discriminate background electrons from signal ones
- The cut-based and MVA-based electron and photon IDs were tuned to ensure a better performance than the Run2

Summary

t

t

ann

m

Jet+MET

- PUPPI as the default algorithm for pileup suppression in Run3
- JES: Excellent and stable performance in the barrel region
- JER: Run3 outperforming Run 2 legacy in $|\eta| < 2.5$
- Full calibration of flavor-aware pT regression for small-cone jets

Heavy flavor tagging

- UParT shows promising performance in Run 3
- 5% better b-jet efficiency than DeepJet in Run2 in the same light jet misidentification rate at 1%
- Good Data vs MC closure after applying SFs

Leptons

- Good and stable data-simulation performance in Muon
- Better Electron / Photon ID than in Run 2

Summary

t

Ī

Jet+MET

- regression for small-cone jets

илострински unocreation for Top measurements, oan unocreation for Top measurements, oan unocreation for Top measurements, oan the for the for the formation of the formation of

- Good and stable data-simulation performance in Muon
- Better Electron / Photon ID than in Run 2

on in Run3

barrel region

ParticleNet p_T regression

Residual corrections closure

- Residual corrections are not recomputed for regressed p_T jets, but the standard ones are applied
- The level of non-closure is approximately up to 2-5% (2-8%) for PNet regressed p_T without (with) neutrinos in the barrel and higher in the endcap (up to 10-20%)

ML tagger Architectures

arXiv:1902.08570

Architectures of the ParticleNet

The structure of the EdgeConv block

ML tagger Architectures

Particle Transformer

s-tagging Performance

- The first time a specific s-node added to jet tagging algorithm
- Performance indicates we can achieve a low efficiency s-tagger

τ_h -tagging Performance

CMS-DP-2024-06

- ParticleNet and UParT show similar performances
- ParticleNet performs better at high misidentification rate and UParT at lower rate

Commissioning in c-tagging

- Performed in W+c phase space

Commissioning in c-tagging

- Performed in W+c phase space

FTAG Frameworks

<u>CMS-DP-2024-020</u> <u>CMS-DP-2024-024</u>

Commissioning workflows

- BTVNanoCommissioing
 - Fast and efficient
 - Python array based manipulation instead of loops
 - Automatized using Gitlab Continuous integration
 - Monitor performance in regular intervals

Training

- b-hive
 - Framework dedicated for training
 - Easily customizable to introduce your own model

