

Machine Learning for Top Quarks

CMS

Matthias Komm for the ATLAS & CMS collaborations

Introduction

- \succ Top quark research; driven by ML!
 - best customers of b tagging since $\mathcal{B}(t \to bW) \approx 1$
 - top quark measurements used NNs & BDTs (+MEM) already at the Tevatron

\succ ML today

- hunting for very rare processes t(t) + vector bosons; 4 top quarks; etc.
- rapidly evolving field

Outline

Disclaimer: will focus on (some) techniques & ideas rather than analyses → big field!

- ML for analyses
 - event reconstruction
 - background estimation
 - signal vs. background classification
- ML for interpretation
 - likelihood-free inference
 - reweighting
 - unfolding

➢ ML for HL LHC

ML for top quark analysis

M. Komm - ML for top quarks

Reconstructing top quarks traditionally

- \blacktriangleright find unknown momentum of neutrino(s)
 - W boson mass constraint still leaves ambiguities
 - 2 real solutions
 - complex solutions
 - even more complicated for dilepton $t\bar{t}$
- jet-parton assignments
 - ⁻ large combinatorial problem; eg. 2520 for $t\bar{t}$ +2j
 - brute force approaches: χ^2 & kinematic fitting → need to iterate through all combinations
- ML can improve both tasks!

Normalizing flows for v solution

SciPost Phys. 14 (2023) 159; PRD 109 (2024) 1, 012005

 \succ

idea

- learn full likelihood of solutions instead of single point

ה. ס1.6

1.4

1.2

1.0

0.8

Truth Neutrino

v-FF

v-Flows

 $\vec{p}_T^{\text{miss}} + m_W$ Constraint

event 1

Attention for jet assignment

- sequence mapping with transformer
 - learn **Q**uery, **K**ey, **V**alue

$$\vec{y_i} = \underbrace{\operatorname{softmax}\left(\vec{Q} \cdot \vec{K}^T\right)}_{U} \cdot \vec{V}$$

attention

→ outputs value if query matches key
⁻ more powerful than LSTM

- Self-Attention for Jet Assignment (SAJA) J. Korean Phys. Soc. 84 (2024) 427
 - Q,K,V are learned from each element \rightarrow self-attention
 - assignment uncertainty estimated using Shannon entropy $\mathbb{H}[\hat{Y}] = \frac{1}{N} \sum_{j=1}^{N} \left(-\sum_{c \in \text{classes}} \hat{y}_{c}^{(j)} \log \hat{y}_{c}^{(j)} \right)$

translation with attention

Attention for jet assignment (2)

SPA NET

SciPost Phys. 12, 178 (2022), Commun Phys 7, 139 (2024)

- transformers + symmetry-aware attention
- complexity $\mathcal{O}(N_{iets}^{\#\text{daughters}})$ instead of $\mathcal{O}(N!)$
- **76%** of semileptonic $t\bar{t}$ events correctly reco'ed! (only 42% using KLFitter)
- regression of auxiliary targets possible, eq. $\eta(\nu)$

 $t\bar{t}H$ vs $t\bar{t}+b\bar{b}$

0.8

1.0

SPANET Fine-tuning (AUC = 0.771)

0.4

0.6 Signal Efficiency

SPANET BDT (AUC = 0.762) SPANET Pretraining (AUC = 0.744)

PDNN BDT (AUC = 0.708) KLFitter BDT (AUC = 0.704)

0.2

0.8

Rejection 9.0

Background I

0.0

0.0

Hypergraphs

arXiv:2402.10149

🎽 idea

- message passing in normal GNNs
 only between pairs of nodes
 - ${\buildrel \buildrel \ } {\buildrel \ } {\buildre$
- hypergraphs defines multiple nodes
 per edge; can represent $t \rightarrow bq\bar{q}$

results

- $^-$ able to assign 67% of had. ${\rm t\bar{t}}$ (SPA NET: 65%)
- HyPER: only 345k parameters!
 (SPA NET: 10.7M)

Background estimations

ABCDisCo Phys. Rev. D 103, 035021 (2021)

- idea: NN outputs 2 independent variables to discriminate against signal
- loss: $\mathcal{L}[f,g] = \mathcal{L}_{\text{classifier}}[f(X),y] + \mathcal{L}_{\text{classifier}}[g(X),y] + \lambda \operatorname{dCorr}_{y=0}^{2}[f(X),g(X)]$
 - \rightarrow use f & g to construct ABCD estimate of bkg. distance correlation
- NB: also useful to decorrelate against auxiliary observable; eg. unfolding observable
- "easier" to train than adversarial approaches; comparable performance

Background estimations (2)

Normalizing flow

Phys. Lett. B 844 (2023) 138076

- idea: use autoregressive normalizing flow to learn a mapping of background distribution CR → SR
- applied in full hadronic 4t analyses by CMS
- [–] trained on $t\bar{t}$ MC
- 2D transform of $(H_T, BDT \text{ score})$

Signal vs bkg. classification

(some thoughts on something supposedly simple)

- optimal binning scheme of classifier output score?
 - \rightarrow might leave performance on the table
- classification = not the best training target?
 - optimize for discovery significance
 - systematic (& profiling)-aware training
 → CMS-PAS-MLG-23-005, INFERNO
- provocative: are we reinforcing the SM by training only on SM?
 - augmenting signal (& bkg) training samples
 - explainable & robust ML
 - train on data? un-/semi-supervised

"nando"

"panda" 57.7% confidence

$+.007 \times$

adversarial attack

"nematode" 8.2% confidence

-

"gibbon" 99.3 % confidence

flat bkg. binning scheme

M. Komm - ML for top quarks

A **foundation model** for top quarks?

- foundation models (eq. OpenAl's GPT)
 - pretrained on big datasets;
 basis for many applications
 - reduces computational costs
 & sharing of common tasks
 - in HEP: first attempt with jets
- ideas for top quarks
 - can harmonize/share:
 reconstruction techniques,
 selection & classification,
 unfolding
 - cross experiment/theory:
 common tokens from
 custom tokenization step

ML for top quark interpretation

M. Komm - ML for top quarks

Likelihood-free inference

arXiv:2010.06439

also called simulation-based inference

- [–] "easy" to run simulator & generate samples $x \sim p(x| heta)$
- likelihood $p(x|\theta)$ intractable; typical solution: use a test statistic (ie. histograms) $x' \Rightarrow p(x'|\theta)$

idea: approximate likelihood ratio with ML classifier score

$$s(x) = \frac{S}{S+B} \Rightarrow \frac{H_1}{H_0} = \frac{s(x)}{1-s(x)}$$

only few ideas/applications in HEP so far:
 SALLY, INFERNO, ... but many more in other fields

"Simulation-based inference is the next step in the methodological evolution of statistical practice in the sciences"

https://simulation-based-inference.org/

JHEP 04 (2024) 014

Learn to **reweight**

CMS-PAS-MLG-24-001, PRD 101, 091901 (2020)

- typically need dedicated samples to assess MC modeling uncertainties (eg. hdamp, b fragmentation, etc.)
- DTCR method: use NN classifier to derive event weights

$$loss(f(x,\theta)) = -\sum_{i \in \theta_0} \log f(x_i, \theta) - \sum_{i \in \theta} \log(1 - f(x_i, \theta))$$
parameter
source sample
target samples

- \rightarrow enables continuous reweighting
- particle flow network (deep-set like)
- reweighting to incorporate higher order correction also possible!
- integrated into central CMS software using ONNX

0.8

Ratio(/NNLO) 0.1 0.1 0.2

Unfolding

an ill-posed inverse problem: $p_{gen}(y) = \int \epsilon(y) R(y, x) p_{reco}(x) dx$

- [–] ML cannot get around this problem; but it can ...
- improve reconstruction \rightarrow less migrations
- estimate n-dim. (unbinned) response matrix
- Omnifold: NN-based multidim. <u>unbinned</u> unfolding
 - inspired by d'Agostini iterative unfolding
 - NN trained to reweight simulation to data
 - iteratively propagate the learned weights to particle/parton level
 - ⁻ can unfold quantities beyond cross sections, eg. $\langle m_{j1} \rangle$ vs $p_{
 m T}$

Repeat $\times 4$

HL LHC challenges

data sets will increase significantly; do we need it all?
 → ML can identify clean events with low uncertainties

- analyses will require lots of MC samples
 - → speed up simulation/systematic evaluation <u>Comput Softw Big Sci 5, 15 (2021)</u>, <u>SciPost Phys. 14, 079 (2023)</u>
- reusability and reinterpretation \rightarrow LHC legacy
 - Les Houches guide to reusable ML models arXiv:2312.14575
 - classifier surrogates for analysis reinterpretations <u>arXiv:2402.15558</u>
- how to evaluate ML models fast?
 - direct, ie. within the process; restricted often to CPU only
 - indirect, deferred to dedicated machine/REST API endpoint
 - → NVIDIA Triton, SONIC by CMS Comput. Softw. Big Sci. 8 (2024) 17
 - edge, on special hardware (eg. FPGA)

JINST 13 P07027 (2018), arXiv:2308.05170

Summary

 ML is a big field! I've not talked about ... unsupervised learning/anomaly detection, ML tuning & calibration, b-tagging, generative ML,

ML for top quarks:

event reconstruction, background estimation, signal vs. background & foundation models, inference, MC reweighting, unfolding, HL LHC challenges

ML wave is coming ...