

BERKELEY LAB

Constraints on Higgs boson width from Higgs and Top

Shuo Han
On behalf of the ATLAS collaboration

17th International Workshop on Top Quark Physics

September 25

Why the Higgs width?

- Important Higgs boson property
- Sensitive to the potential presence of beyond SM Higgs boson decays that are not covered by direct searches
- However in the SM, Higgs width is 4.1
 MeV, which is inaccessible via most of the direct measurement at ATLAS/CMS due to limited detector resolution

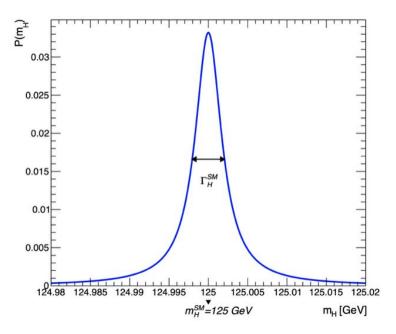


Figure 1: The relativistic Breit-Wigner distribution of the Higgs boson resonance with a width (Γ_{-} H) of 4.1 MeV. For comparison, the width of the Z boson is more than 600 times larger (2.495 GeV), allowing us to measure it directly from the Breit-Wigner line shape. (Image: M. Javurkova/ATLAS Collaboration)

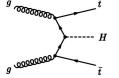
How to measure the Higgs width

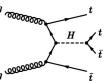
$$rac{ extstyle d\sigma}{ extstyle dm^2} = rac{ extstyle g_i^2 extstyle g_f^2}{(m^2 - m_H^2)^2 + m_H^2 \Gamma_{ extstyle H}^2}$$

$$\sigma \propto rac{g_i^2 g_f^2}{m_H \Gamma}$$

correlated

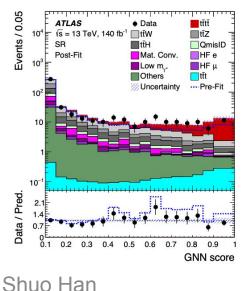
On-shell Higgs:
$$d\sigma \propto g_i^2 g_f^2 \
m coupling \ and \ width \ correlated $d\sigma \propto (m^2 - m_H^2)^2$$$

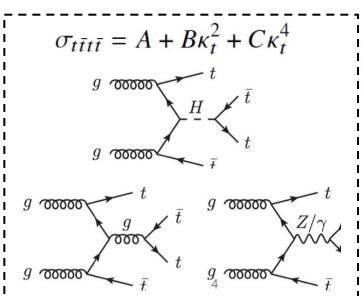

Off-shell Higgs: coupling and width uncorrelated

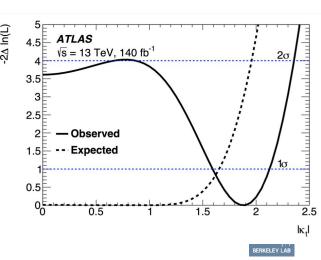

Higgs boson lineshape

Combined measurement of on-shell and off-shell Higgs boson : $R_{\Gamma} = \frac{\Gamma_{\rm H}}{\Gamma_{\rm H,SM}} =$

- Higgs width with off-shell HZZ:
 - ATLAS: PLB 846 (2023) 138223 (95% CL limit of Γ_{H} < 10.2 MeV)
 - CMS: <u>Nature Phys. 18 (2022) 1329</u> (limit of Γ_{H} < 8.5 MeV)
- However, the loop-induced effective Higgs-gluon coupling could vary differently between on-shell and off-shell production processes
- Today's talk: new paper for Higgs width from Higgs and top (off-shell Htt within Standard Model four-top process) arxiv:2407.10631,

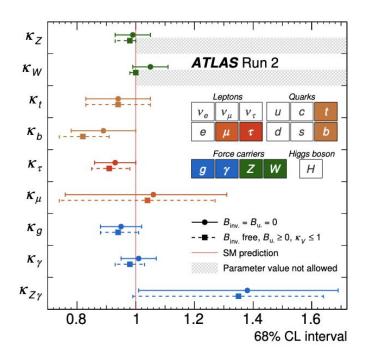

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2023-22/





Off-shell input: four-top measurement

- The observation of SM four-top process: <u>EPJC 83 (2023) 496</u>
 - Multi-lepton channel contains events with 2 same-sign leptons or at least 3 leptons.
 - Binned S+B fit on the Graph Neural Network (GNN) scores
- Observed four-top process at 6.1σ (4.3σ expected)
 - 95% CL limit was set on top-Higgs Yukawa coupling modifier $|\kappa_i|$ < 2.3 (1.9 expected)



On-shell input: the Higgs couplings

- Higgs coupling measurements: Nature 607 (2022) 52-59
 - \circ t \overline{t} H (multi-lepton) channel is removed in the combined measurement due to non-trivial overlap with the t \overline{t} t \overline{t} measurement: the measured κ_{t} is modified from 0.94±0.11 to 0.86±0.13

Target processes	
Off-shell measurement	
$pp \to t\bar{t}t\bar{t}$	
On-shell measurement	
Production	Decay
ggF, VBF, WH , ZH , $t\bar{t}H$, tH	$H o \gamma \gamma$
$t\bar{t}H + tH$	$H o b ar{b}$
WH,ZH	$H o b ar{b}$
VBF	$H o b ar{b}$
ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	$H \to ZZ$
ggF, VBF	$H \to WW$
WH,ZH	$H \to WW$
ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	H o au au
$ggF+t\bar{t}H+tH$, VBF+ $WH+ZH$	$H o \mu \mu$
Inclusive	$H \rightarrow Z\gamma$

Combined analysis strategy

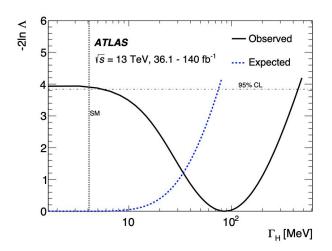
- Likelihood combination of the two input analysis results
- Parameter Of Interest:
 - top-Higgs coupling modifier κ_t and Higgs width modifier R_Γ

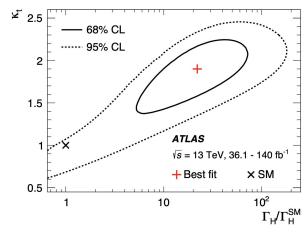
Four-top	κ_t
Higgs combination	R_{Γ} , κ_t , κ_Z , κ_W , κ_b , κ_{τ} , κ_{μ} , κ_g , κ_{γ} , $\kappa_{Z\gamma}$
Combined	R_{Γ} , κ_t , κ_Z , κ_W , κ_b , κ_{τ} , κ_{μ} , κ_g , κ_{γ} , $\kappa_{Z\gamma}$

• The $t \, \overline{t} \, H$ events in $t \, \overline{t} \, t \, \overline{t}$ analysis, and the $t \, \overline{t} \, t \, \overline{t}$ events in $t \, \overline{t} \, H$ -bb analysis are not parameterized as a function of K_t , its impact on limits is checked to be < 2%

Systematic uncertainties

- The high impact systematic uncertainties are correlated, because the input analyses consider the same set of uncertainty sources. The uncorrelated uncertainties have negligible impacts.
- The largest impacts are from the theoretical uncertainties of the four-top analysis

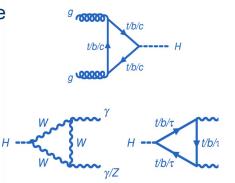

Systematic uncertainty	Impact on 95% CL upper limit on Γ_H	
	Expected [%]	Observed [%]
Theory	37	33
$t\bar{t}t\bar{t}$ production	25	13
Higgs boson production/decay	5	6
Other processes	10	16
Experimental	2	2
Jet flavour tagging	2	1
Jet and missing transverse energy	< 1	< 1
Leptons and photons	< 1	< 1
All other systematic uncertainties	< 1	< 1

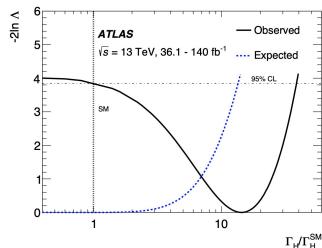


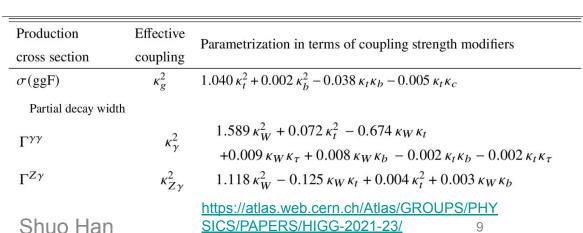
Result

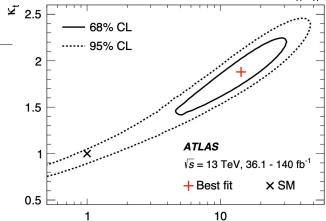
- Observed (expected) limit: 450 (75) MeV
 - 110 (18) times the SM
 - Stat-only: 280 (44) MeV
 Γ_H = 86⁺¹¹⁰₋₄₉ MeV
- Deviation from SM: 2.0 σ, mainly from the 1.8 σ deviation in the measurement of t t̄ t t̄ cross-section

In the 2D limit plane, the κ_t best-fit value (κ_t =1.9) is mainly decided by the four-top observed result, and Higgs width is scaled together with other POI




Result with top loops


In the nominal result, the modification of the ggF cross-section and Hyy/HZy branching ratio are described by $\kappa_{\rm a}$, $\kappa_{\rm v}$ and $\kappa_{\rm Zv}$


If the top loops in ggF and H $\gamma\gamma$ /HZ γ are parameterized as a function of κ_{τ} :

- Limit: 160 (55) MeV
- Deviation from SM: 2.0σ

Conclusion

- A first measurement of the Higgs width based on top-Higgs coupling is performed
 - It explores model assumptions distinct from diboson final states, thereby testing the robustness the Higgs boson total width measurements
- The observed (expected) 95% CL upper limit for is 450 (75) MeV.
 - Theoretical uncertainties have large impact on the results
 - \circ The tension with the SM is found to be 2.0 σ
 - If further resolving the loops of gluon fusion and Higgs to γγ and Zγ, the observed (expected) 95% CL upper limit for is 160 (55) MeV
- Further constraints can be achieved with the future four-top analyses and Higgs coupling results

Backup

•

