

Complete NLO corrections to off-shell tTZ production at the LHC

Based on a work done by A. Denner, DL and G. Pelliccioli (<u>arXiv:2306.13535</u>)

> Presented by Daniele Lombardi

TOP2024 Workshop (Saint-Malo) Young Scientist Forum September 25th, 2024

Search for $t\bar{t}Z$ production

- Important test of Standard Model (SM).
- ♦ Improved control on background for other processes (i.e $t\bar{t}H$, tZ, $t\bar{t}t\bar{t}$, ...).
- \clubsuit Better understanding of top-quark couplings to electroweak (EW) sector \rightarrow beyond the SM physics?

Theory predictions for $t\bar{t}Z$

(on-shell)

MOD VICT Predictions for on-shell top quark and **Fixed** order Z boson [arXiv:0804.2220, arXiv:1111.0610].

NLO QCD corrections to top-quark decay in narrow-width approximation [arXiv:1404.1005].

MODIFIEN predictions for on-shell top quark and Z boson with MadGraph5_aMC@NLO [arXiv:1504.03446, arXiv:1804.10017].

✓ NLO QCD + PS using MC@NLO [arXiv:1507.05640] and POWHEG [arXiv:1111.1444, arXiv:1208.2665], with narrow-width simulation of top-quark and Z-boson decays.

- Inclusion of off-shell effects for Z-boson decay with POWHEG [arXiv:2112.08892].
- \mathbf{V} NLO QCD +NNLL results for on-shell top quark and \mathbf{Z} boson [arXiv:1702.00800, arXiv:1812.08622], also including EW corrections [arXiv:1907.04343, arXiv:2001.03031].
- **MID QCD** calculation for <u>fully off-shell</u> top quark and Z boson in HELAC-NLO for $Z \rightarrow \nu_{\ell} \bar{\nu}_{\ell}$ [arXiv:1907.09359] and $Z \rightarrow \ell \bar{\ell}$ [arXiv:2203.15688].
- □ NLO QCD+EW predictions for <u>fully off-shell</u> top quark and Z boson in the multilepton decay channel with MoCaNLO [arXiv:2306.13535].

Theory predictions for $t\bar{t}Z$

- \mathbf{V} NLO QCD predictions for on-shell top quark and Z boson [arXiv:0804.2220, arXiv:1111.0610].
 - NLO QCD corrections to top-quark decay in narrow-width approximation [arXiv:1404.1005].
- ✓ NLO QCD+EW predictions for on-shell top quark and Z boson with MadGraph5_aMC@NLO [arXiv:1504.03446, arXiv:1804.10017].

✓ NLO QCD +PS using MC@NLO [arXiv:1507.05640] and POWHEG [arXiv:1111.1444, arXiv:1208.2665], with narrow-width simulation of top-quark and Z-boson decays.

All order (on-shell)

Inclusion of off-shell effects for Z-boson decay with POWHEG [arXiv:2112.08892].

✓ NLO QCD +NNLL results for on-shell top quark and Z boson [<u>arXiv:1702.00800</u>, <u>arXiv:1812.08622</u>], also including EW corrections [<u>arXiv:1907.04343</u>, <u>arXiv:2001.03031</u>].

 \mathbf{VLOQCD} calculation for <u>fully off-shell</u> top quark and Z boson in HELAC-NLO for $Z \to \nu_{\ell} \bar{\nu}_{\ell}$ [arXiv:1907.09359] and $Z \to \ell \bar{\ell}$ [arXiv:2203.15688].

□ NLO QCD+EW predictions for <u>fully off-shell</u> top quark and Z boson in the multilepton decay channel with MoCaNLO [<u>arXiv:2306.13535</u>].

Theory predictions for $t\bar{t}Z$

- \mathbf{V} NLO QCD predictions for on-shell top quark and Z boson [arXiv:0804.2220, arXiv:1111.0610].
 - NLO QCD corrections to top-quark decay in narrow-width approximation [arXiv:1404.1005].
- ✓ NLO QCD+EW predictions for on-shell top quark and Z boson with MadGraph5_aMC@NLO [arXiv:1504.03446, arXiv:1804.10017].

- ✓ NLO QCD +PS using MC@NLO [arXiv:1507.05640] and POWHEG [arXiv:1111.1444, arXiv:1208.2665], with narrow-width simulation of top-quark and Z-boson decays.
 - Inclusion of off-shell effects for Z-boson decay with POWHEG [arXiv:2112.08892].

✓ NLO QCD +NNLL results for on-shell top quark and Z boson [arXiv:1702.00800, arXiv:1812.08622], also including EW corrections [arXiv:1907.04343, arXiv:2001.03031].

MACTION Second Content of the state of the second content of th

□ NLO QCD+EW predictions for <u>fully off-shell</u> top quark and Z boson in the multilepton decay channel with MoCaNLO [<u>arXiv:2306.13535</u>].

Fixed order (off-shell)

Structure of the calculation

A.Denner, DL, and G.Pelliccioli [arXiv:2306.13535]

NLO QCD and NLO EW corrections to fully off-shell $t\overline{t}Z$:

 $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$

- Calculation performed with the in-house MoCaNLO program:
 - SM amplitudes computed with RECOLA (CKM matrix set to identity matrix);
 - Tensor reduction and evaluation of 1-loop integrals with COLLIER library.
- ✤ All light-quark- and gluon-induced partonic channels computed, together with:
 - Photon-induced channels;
 - Bottom-induced contributions \rightarrow complete 5-flavour scheme.
- Inclusion of resonant and non-resonant terms (Higgs contribution included).
- ✤ Heavy-boson radiation at NLO EW neglected.

Structure of the calculation: LO_1 term

A.Denner, DL, and G.Pelliccioli [arXiv:2306.13535]

NLO QCD and NLO EW corrections to fully off-shell $t\overline{t}Z$:

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$$

• Charge-blind b-jet tagging \rightarrow sub-leading $\overline{b}\overline{b}$ and bb contributions included.

- gg- and $q\bar{q}$ -induced channels.
- Dominance of doubly-resonant $t\bar{t}$ topologies.

Structure of the calculation: LO_2 term

A.Denner, DL, and G.Pelliccioli [arXiv:2306.13535]

NLO QCD and NLO EW corrections to fully off-shell $t\overline{t}Z$:

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$$

Non-vanishing bottom-interference terms.

- Light-quark interference terms vanish due to colour algebra.
- γg channel arises at this order.

Complete NLO corrections to off-shell $t\bar{t}Z$ at the LHC

Structure of the calculation: LO_3 term

A.Denner, DL, and G.Pelliccioli [arXiv:2306.13535]

NLO QCD and NLO EW corrections to fully off-shell $t\overline{t}Z$:

 $pp \ \rightarrow \ e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$

 LO_1 LO_2 LO_3 $\alpha_{\rm s}^2 \alpha^0$ α^8 $\alpha_{
m s} \alpha$ QCD QCD, QCD $\alpha_{\rm s}^2 \alpha^7$ $\alpha_{s}^{3}\alpha$ $\alpha_{\rm s} \alpha^{\circ}$ NLO_1 NLO_2 NLO₃ NLO_4

• $\gamma\gamma$ channel enters at this order.

 New enhanced topologies for bottominduced contributions.

Structure of the calculation: NLO_1 correction

A.Denner, DL, and G.Pelliccioli [arXiv:2306.13535]

NLO QCD and NLO EW corrections to fully off-shell $t\bar{t}Z$:

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$$

$$\begin{split} gg &\to e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b \, \bar{b} \, \tau^+ \tau^- g \,, \quad q\bar{q} \to e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b \, \bar{b} \, \tau^+ \tau^- g \,, \\ g\bar{q} \to e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b \, \bar{b} \, \tau^+ \tau^- \bar{q} \,, \quad gq \to e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b \, \bar{b} \, \tau^+ \tau^- q \,. \end{split}$$

- Dominant NLO correction.
- Validated against results obtained in HELAC-NLO framework [arXiv:2203.15688].

• Bottom-recombination rules crucial to avoid $g \rightarrow b\bar{b}$ singularity.

$$\begin{split} b\bar{b} &\rightarrow e^+\nu_e\,\mu^-\bar{\nu}_\mu\,b\,\bar{b}\,\tau^+\tau^-g\,,\\ bb &\rightarrow e^+\nu_e\,\mu^-\bar{\nu}_\mu\,b\,b\,\tau^+\tau^-g\,,\quad \bar{b}\bar{b} \rightarrow e^+\nu_e\,\mu^-\bar{\nu}_\mu\,\bar{b}\,\bar{b}\,\tau^+\tau^-g\,,\\ g\bar{b} &\rightarrow e^+\nu_e\,\mu^-\bar{\nu}_\mu\,b\,\bar{b}\,\tau^+\tau^-\bar{b}\,,\quad gb \rightarrow e^+\nu_e\,\mu^-\bar{\nu}_\mu\,b\,\bar{b}\,\tau^+\tau^-b\,. \end{split}$$

Structure of the calculation: NLO_2 correction

A.Denner, DL, and G.Pelliccioli [arXiv:2306.13535]

NLO QCD and NLO EW corrections to fully off-shell $t\overline{t}Z$:

$$pp \ \rightarrow \ e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$$

Two sources of corrections, distinguishable at the real-amplitude level, but not for the virtual contributions.

Structure of the calculation: NLO3 correction

A.Denner, DL, and G.Pelliccioli [arXiv:2306.13535]

NLO QCD and NLO EW corrections to fully off-shell $t\overline{t}Z$:

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$$

- EW corrections to LO_2 for bottom- and γg -induced channels.
- Enhanced QCD corrections to LO_3 due to new scattering topologies in the lightquark + gluon channels.

Structure of the calculation: NLO_4 correction

A.Denner, DL, and G.Pelliccioli [arXiv:2306.13535]

NLO QCD and NLO EW corrections to fully off-shell $t\bar{t}Z$:

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$$

- Contribution at the sub-per-mille level to the result.
- Computationally challenging virtual terms: high number of rank-6 10-point 1-loop functions to be evaluated!

Definition of the fiducial region

 $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$

♦ QCD partons with $|\eta| < 5$ are clustered into jets with anti- k_t clustering (R = 0.4).

- Recombination rules: $j + j \rightarrow j$, $j_b + j \rightarrow j_b$, $j_b + j_b \rightarrow j$.
- At least two b-jets are required: $p_{T,b} > 25 \, GeV$, $|\eta_b| < 2.5$, $\Delta R_{bb} > 0.4$.
- No cuts on additional light- or b-jet activity.
- Leptons are dressed with anti- k_t clustering (R = 0.1):
 - All leptons have to satisfy the cuts: $p_{T,\ell_i} > 20 \, GeV$, $|\eta_{\ell_i}| < 2.5$, $\Delta R_{\ell_i \ell_i} > 0.4$.
- Missing transverse momentum cut: $p_{T, miss} > 40 \, GeV$.

✤ Renormalisation and factorisation scales set to:

$$u_0^{(d)} = \frac{1}{2} \left(m_{T,t} \, m_{T,\bar{t}} \right)^{1/2} = \frac{1}{2} \left(\sqrt{m_t^2 + p_{T,t}^2} \sqrt{m_t^2 + p_{T,\bar{t}}^2} \right)^{1/2}$$

Integrated Cross sections

perturbative order	$\sigma_{ m nob} ~[m ab]$	$rac{\sigma_{ m nob}}{\sigma_{ m nob, LO_1}}$	$\sigma_{ m b}$ [ab]	$rac{\sigma_{ m b}}{\sigma_{ m nob,LO_1}}$	$\sigma ~[{ m ab}]$	$rac{\sigma}{\sigma_{ m LO_1}}$
LO_1	$107.246(5)^{+35.0\%}_{-24.0\%}$	1.0000	0.31378(9)	+0.0029	$107.560(5)^{+34.9\%}_{-23.9\%}$	1.0000
LO_2	$0.7522(2)^{+11.1\%}_{-9.0\%}$	+0.0070	-0.6305(2)	-0.0059	0.1217(3)	+0.0011
LO_3	$0.2862(1)^{+3.4\%}_{-3.4\%}$	+0.0027	0.7879(2)	+0.0073	$1.0742(3)^{+12.1\%}_{-14.9\%}$	+0.0100
NLO ₁	-11.4(1)	-0.1072	0.518(3)	+0.0048	-10.9(1)	-0.1016
NLO_2	-0.89(1)	-0.0083	0.051(3)	+0.0005	-0.84(1)	-0.0078
NLO_3	1.126(4)	+0.0105	-0.089(4)	-0.0008	1.037(6)	+0.0096
NLO_4	-0.0340(9)	-0.0003	-0.0180(9)	-0.0002	-0.052(1)	-0.0005
$LO_1 + NLO_1$	$95.8(1)^{+0.4\%}_{-11.2\%}$	+0.8933	0.832(3)	+0.0078	$96.6(1)^{+0.4\%}_{-10.7\%}$	+0.8984
LO	$108.285(5)^{+34.7\%}_{-23.8\%}$	+1.0097	0.4713(3)	+0.0044	$108.756(5)^{+34.5\%}_{-23.7\%}$	+1.0111
LO+NLO	$97.0(1)^{+0.5\%}_{-11.2\%}$	+0.9052	0.932(6)	+0.0087	$98.0(1)^{+0.4\%}_{-10.7\%}$	+0.9114

Integrated Cross sections: NLO_1 correction

perturbative order	$\sigma_{ m nob}~[m ab]$	$rac{\sigma_{ m nob}}{\sigma_{ m nob, LO_1}}$	$\sigma_{ m b}$ [ab]	$rac{\sigma_{ m b}}{\sigma_{ m nob,LO_1}}$	$\sigma ~[{ m ab}]$	$rac{\sigma}{\sigma_{ m LO_1}}$
LO_1	$107.246(5)^{+35.0\%}_{-24.0\%}$	1.0000	0.31378(9)	+0.0029	$107.560(5)^{+34.9\%}_{-23.9\%}$	1.0000
LO_2	$0.7522(2)^{+11.1\%}_{-9.0\%}$	+0.0070	-0.6305(2)	-0.0059	0.1217(3)	+0.0011
LO_3	$0.2862(1)^{+3.4\%}_{-3.4\%}$	+0.0027	0.7879(2)	+0.0073	$1.0742(3)^{+12.1\%}_{-14.9\%}$	+0.0100
NLO ₁	-11.4(1)	-0.1072	0.518(3)	+0.0048	-10.9(1)	-0.1016
NLO_2	-0.89(1)	-0.0083	0.051(3)	+0.0005	-0.84(1)	-0.0078
NLO_3	1.126(4)	+0.0105	-0.089(4)	-0.0008	1.037(6)	+0.0096
NLO_4	-0.0340(9)	-0.0003	-0.0180(9)	-0.0002	-0.052(1)	-0.0005
$LO_1 + NLO_1$	$95.8(1)^{+0.4\%}_{-11.2\%}$	+0.8933	0.832(3)	+0.0078	$96.6(1)^{+0.4\%}_{-10.7\%}$	+0.8984
LO	$108.285(5)^{+34.7\%}_{-23.8\%}$	+1.0097	0.4713(3)	+0.0044	$108.756(5)^{+34.5\%}_{-23.7\%}$	+1.0111
LO+NLO	$97.0(1)^{+0.5\%}_{-11.2\%}$	+0.9052	0.932(6)	+0.0087	$98.0(1)^{+0.4\%}_{-10.7\%}$	+0.9114

Dominance of NLO_1 contribution:

- Roughly -10% correction of LO_1 ;
- · Large reduction of scale uncertainties.

Theoretical uncertainties from 7-point scale variation!

Integrated Cross sections: Sub-leading contributions

perturbative order	$\sigma_{ m nob}~[m ab]$	$rac{\sigma_{ m nob}}{\sigma_{ m nob,LO_1}}$	$\sigma_{ m b}$ [ab]	$rac{\sigma_{ m b}}{\sigma_{ m nob,LO_1}}$	σ [ab]	$rac{\sigma}{\sigma_{ m LO_1}}$
LO ₁	$107.246(5)^{+35.0\%}_{-24.0\%}$	1.0000	0.31378(9)	+0.0029	$107.560(5)^{+34.9\%}_{-23.9\%}$	1.0000
LO_2	$0.7522(2)^{+11.1\%}_{-9.0\%}$	+0.0070	-0.6305(2)	-0.0059	0.1217(3)	+0.0011
LO_3	$0.2862(1)^{+3.4\%}_{-3.4\%}$	+0.0027	0.7879(2)	+0.0073	$1.0742(3)^{+12.1\%}_{-14.9\%}$	+0.0100
NLO_1	-11.4(1)	-0.1072	0.518(3)	+0.0048	-10.9(1)	-0.1016
NLO_2	-0.89(1)	-0.0083	0.051(3)	+0.0005	-0.84(1)	-0.0078
NLO_3	1.126(4)	+0.0105	-0.089(4)	-0.0008	1.037(6)	+0.0096
NLO_4	-0.0340(9)	-0.0003	-0.0180(9)	-0.0002	-0.052(1)	-0.0005
$LO_1 + NLO_1$	$95.8(1)^{+0.4\%}_{-11.2\%}$	+0.8933	0.832(3)	+0.0078	$96.6(1)^{+0.4\%}_{-10.7\%}$	+0.8984
LO	$108.285(5)^{+34.7\%}_{-23.8\%}$	+1.0097	0.4713(3)	+0.0044	$108.756(5)^{+34.5\%}_{-23.7\%}$	+1.0111
LO+NLO	$97.0(1)^{+0.5\%}_{-11.2\%}$	+0.9052	0.932(6)	+0.0087	$98.0(1)^{+0.4\%}_{-10.7\%}$	+0.9114

Sub-leading contributions:

- *LO*₂ + *LO*₃ ~ 1% of *LO*₁;
- $NLO_2 + NLO_3 \sim 0.2\%$ correction to LO_1 .

Theoretical uncertainties from 7-point scale variation!

Integrated Cross sections: Bottom channels (at LO)

perturbative order	$\sigma_{ m nob}~[m ab]$	$rac{\sigma_{ m nob}}{\sigma_{ m nob, LO_1}}$	$\sigma_{ m b} ~[m ab]$	$rac{\sigma_{ m b}}{\sigma_{ m nob,LO_1}}$	σ [ab]	$rac{\sigma}{\sigma_{ m LO_1}}$
LO_1	$107.246(5)^{+35.0\%}_{-24.0\%}$	1.0000	0.31378(9)	+0.0029	$107.560(5)^{+34.9\%}_{-23.9\%}$	1.0000
LO_2	$0.7522(2)^{+11.1\%}_{-9.0\%}$	+0.0070	-0.6305(2)	-0.0059	0.1217(3)	+0.0011
LO_3	$0.2862(1)^{+3.4\%}_{-3.4\%}$	+0.0027	0.7879(2)	+0.0073	$1.0742(3)^{+12.1\%}_{-14.9\%}$	+0.0100
$\rm NLO_1$	-11.4(1)	-0.1072	0.518(3)	+0.0048	-10.9(1)	-0.1016
NLO_2	-0.89(1)	-0.0083	0.051(3)	+0.0005	-0.84(1)	-0.0078
NLO_3	1.126(4)	+0.0105	-0.089(4)	-0.0008	1.037(6)	+0.0096
NLO_4	-0.0340(9)	-0.0003	-0.0180(9)	-0.0002	-0.052(1)	-0.0005
$LO_1 + NLO_1$	$95.8(1)^{+0.4\%}_{-11.2\%}$	+0.8933	0.832(3)	+0.0078	$96.6(1)^{+0.4\%}_{-10.7\%}$	+0.8984
LO	$(108.285(5)^{+34.7\%}_{-23.8\%})$	+1.0097	0.4713(3)	+0.0044	$108.756(5)^{+34.5\%}_{-23.7\%}$	+1.0111
LO+NLO	$97.0(1)^{+0.5\%}_{-11.2\%}$	+0.9052	0.932(6)	+0.0087	$98.0(1)^{+0.4\%}_{-10.7\%}$	+0.9114

Role of the bottom-induced channels:

• Impact of LO bottom contributions at the sub-percent level on full LO;

Integrated Cross sections: Bottom channels (at NLO)

perturbative order	$\sigma_{ m nob}~[m ab]$	$rac{\sigma_{ m nob}}{\sigma_{ m nob, LO_1}}$	$\sigma_{\rm b} \; [{\rm ab}]$	$rac{\sigma_{ m b}}{\sigma_{ m nob,LO_1}}$	σ [ab]	$rac{\sigma}{\sigma_{ m LO_1}}$
LO ₁	$107.246(5)^{+35.0\%}_{-24.0\%}$	1.0000	0.31378(9)	+0.0029	$107.560(5)^{+34.9\%}_{-23.9\%}$	1.0000
LO_2	$0.7522(2)^{+11.1\%}_{-9.0\%}$	+0.0070	-0.6305(2)	-0.0059	0.1217(3)	+0.0011
LO_3	$0.2862(1)^{+3.4\%}_{-3.4\%}$	+0.0027	0.7879(2)	+0.0073	$1.0742(3)^{+12.1\%}_{-14.9\%}$	+0.0100
NLO_1	-11.4(1)	-0.1072	0.518(3)	+0.0048	-10.9(1)	-0.1016
NLO_2	-0.89(1)	-0.0083	0.051(3)	+0.0005	-0.84(1)	-0.0078
NLO_3	1.126(4)	+0.0105	-0.089(4)	-0.0008	1.037(6)	+0.0096
NLO_4	-0.0340(9)	-0.0003	-0.0180(9)	-0.0002	-0.052(1)	-0.0005
LO ₁ +NLO ₁	$95.8(1)^{+0.4\%}_{-11.2\%}$	+0.8933	0.832(3)	+0.0078	$96.6(1)^{+0.4\%}_{-10.7\%}$	+0.8984
LO	$108.285(5)^{+34.7\%}_{-23.8\%}$	+1.0097	0.4713(3)	+0.0044	$108.756(5)^{+34.5\%}_{-23.7\%}$	+1.0111
LO+NLO	$97.0(1)^{+0.5\%}_{-11.2\%}$	+0.9052	0.932(6)	+0.0087	$98.0(1)^{+0.4\%}_{-10.7\%}$	+0.9114

Role of the bottom-induced channels:

- Impact of LO bottom contributions at the sub-percent level on full LO;
- Roughly +1% correction to the full result after including bottom-channels at LO and NLO.

Theoretical uncertainties from 7-point scale variation!

Integrated Cross sections: NLO_4 corrections

perturbative order	$\sigma_{ m nob}~[m ab]$	$rac{\sigma_{ m nob}}{\sigma_{ m nob, LO_1}}$	$\sigma_{ m b}$ [ab]	$rac{\sigma_{ m b}}{\sigma_{ m nob,LO_1}}$	σ [ab]	$rac{\sigma}{\sigma_{ m LO_1}}$
LO ₁	$107.246(5)^{+35.0\%}_{-24.0\%}$	1.0000	0.31378(9)	+0.0029	$107.560(5)^{+34.9\%}_{-23.9\%}$	1.0000
LO_2	$0.7522(2)^{+11.1\%}_{-9.0\%}$	+0.0070	-0.6305(2)	-0.0059	0.1217(3)	+0.0011
LO_3	$0.2862(1)^{+3.4\%}_{-3.4\%}$	+0.0027	0.7879(2)	+0.0073	$1.0742(3)^{+12.1\%}_{-14.9\%}$	+0.0100
NLO_1	-11.4(1)	-0.1072	0.518(3)	+0.0048	-10.9(1)	-0.1016
NLO_2	-0.89(1)	-0.0083	0.051(3)	+0.0005	-0.84(1)	-0.0078
NLO_3	1.126(4)	+0.0105	-0.089(4)	-0.0008	1.037(6)	+0.0096
NLO_4	-0.0340(9)	-0.0003	-0.0180(9)	-0.0002	-0.052(1)	-0.0005
$LO_1 + NLO_1$	$95.8(1)^{+0.4\%}_{-11.2\%}$	+0.8933	0.832(3)	+0.0078	$96.6(1)^{+0.4\%}_{-10.7\%}$	+0.8984
LO	$108.285(5)^{+34.7\%}_{-23.8\%}$	+1.0097	0.4713(3)	+0.0044	$108.756(5)^{+34.5\%}_{-23.7\%}$	+1.0111
LO+NLO	$97.0(1)^{+0.5\%}_{-11.2\%}$	+0.9052	0.932(6)	+0.0087	$98.0(1)^{+0.4\%}_{-10.7\%}$	+0.9114

Fully off-shell NLO_4 corrections confirm to be negligible, so that omitting them is under good theoretical control.

Differential Cross sections: $p_{T, b\bar{b}}$

Differential Cross sections: $p_{T, b\bar{b}}$

Differential Cross sections: $p_{T, b\bar{b}}$

Differential Cross sections: $p_{T, b\bar{b}}$

• Large NLO_1 corrections due to giant QCD K-factor.

Interplay between NLO2
 corrections (EW Sudakov
 logarithms) and NLO3 ones
 (dominance of real gluon-induced contributions).

Moderate correction due to the inclusion of bottom channels.

Differential Cross sections: $M_{\tau^+\tau^-}$

• Negative NLO_1 corrections in the far off-shell region.

Differential Cross sections: $M_{\tau^+\tau^-}$

Differential Cross sections: $M_{\tau^+\tau^-}$

- Negative NLO_1 corrections in the far off-shell region.
- LO_2 is the largest sub-leading contribution in the off-shell region, due to the γg channel.

• Flat QCD-like corrections from NLO_3 terms.

radiation).

• NLO_2 corrections are the

Z-mass pole (radiative

return due to real photon

dominant ones around the

Summary:

- Fully off-shell calculations for $t\bar{t}Z$ are important for a reliable description of the process both at the inclusive and at the differential level.
- NLO QCD corrections are the dominant NLO contributions:
 - At the inclusive level, sub-leading LO and NLO terms amount to less than a percent correction;
 - At the differential level, sub-leading terms are crucial for a correct description of the normalisation and the shape of many observables \rightarrow non-trivial interplay among different corrections.

Summary:

- Fully off-shell calculations for $t\bar{t}Z$ are important for a reliable description of the process both at the inclusive and at the differential level.
- NLO QCD corrections are the dominant NLO contributions:
 - At the inclusive level, sub-leading LO and NLO terms amount to less than a percent correction;
 - At the differential level, sub-leading terms are crucial for a correct description of the normalisation and the shape of many observables \rightarrow non-trivial interplay among different corrections.

Thank you for your attention

Backup

Fiducial Cross sections at LO: a channel-by-channel analysis

Channel	LO_1	LO_2	LO_3
gg	74.760(4)	-	-
qar q	32.486(3)	-	0.2848(1)
$b\bar{b}$	0.29208(9)	-0.6330(2)	0.7821(2)
$ar{ m b}ar{ m b}/ m bb$	0.02171(2)	0.002516(9)	0.005817(9)
$\gamma { m g}$	-	0.7522(2)	-
$\gamma\gamma$	-	-	0.001431(6)
sum	107.560(5)	0.1217(3)	1.0742(3)

Fiducial Cross sections at NLO: a channel-by-channel analysis

Channel	NLO_1	NLO_2	NLO_3	NLO_4
gg	-14.9(1)	-0.107(9)	-	-
qar q	-12.35(7)	-1.177(6)	0.013(4)	-0.0380(9)
$\mathrm{b}ar{\mathrm{b}}$	-0.106(2)	0.195(2)	-0.324(4)	-0.0194(9)
$ar{ m b}ar{ m b}/ m bb$	0.00031(7)	-0.0016(1)	-0.0022(2)	-0.00059(2)
$\gamma { m g}$	-	-0.136(2)	0.0101(8)	-
$\gamma\gamma$	-	-	-0.00020(3)	-0.00010(2)
${ m g}q/{ m g}ar{q}$	15.77(3)	0.0570(5)	1.102(1)	-
${ m gb}/{ m gb}$	0.624(2)	-0.146(2)	0.237(2)	-
$\gamma q/\gamma ar q$	-	0.4774(8)	-	0.00403(2)
$\gamma \mathrm{b}/\gamma \mathrm{ar{b}}$	-	0.00347(9)	-0.00026(1)	0.00194(1)
sum	-10.9(1)	-0.83(1)	1.037(6)	-0.052(1)

Differential Cross sections: $M_{\overline{t}}$

Daniele Lombardi

Complete NLO corrections to off-shell $t\bar{t}Z$ at the LHC

Differential Cross sections: H_T^{vis}

Daniele Lombardi

Complete NLO corrections to off-shell $t\bar{t}Z$ at the LHC

Differential Cross sections: Angular Observables

Differential Cross sections: Rapidity Distributions

Differential Cross sections: Transverse Momenta

