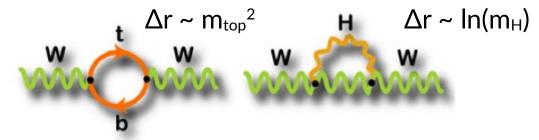
# High-precision measurement of the W boson mass at CMS

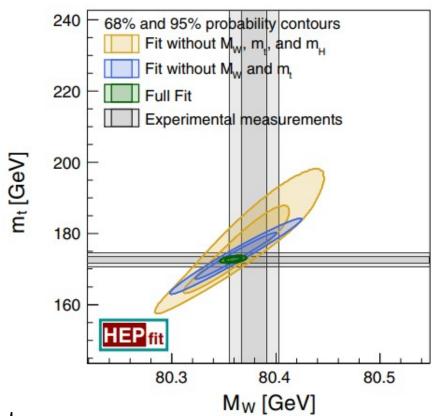
[CMS-PAS-SMP-23-002]

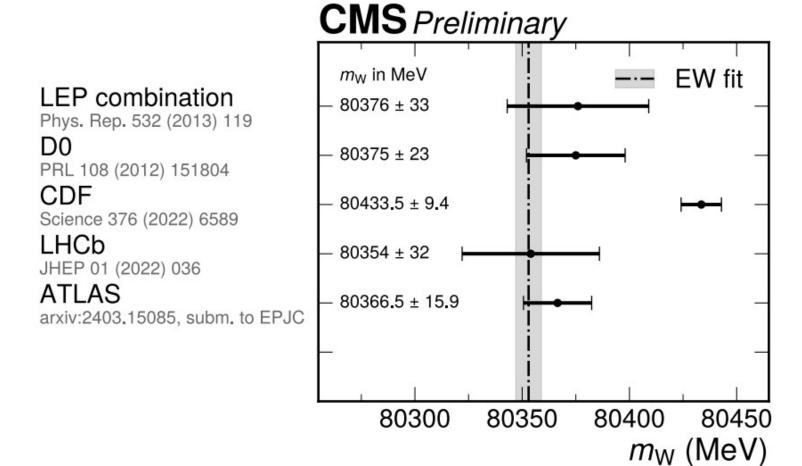
TOP Workshop Saint Malo 26.09.2024

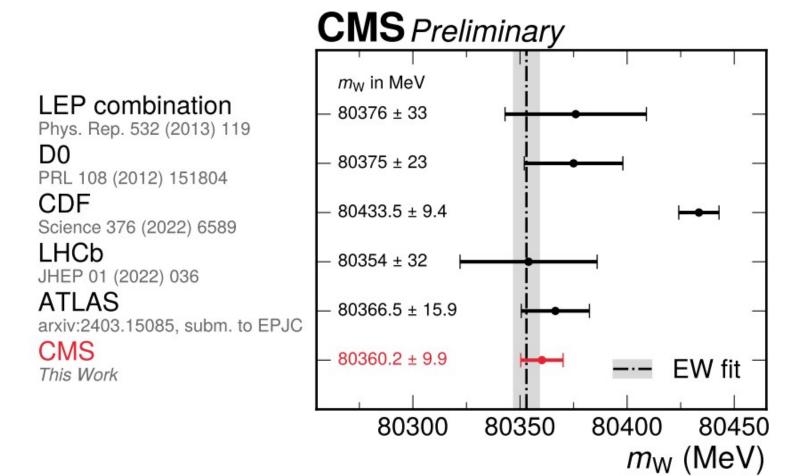
David Walter (CERN) on behalf of the CMS Collaboration







# Why measure the W boson mass?

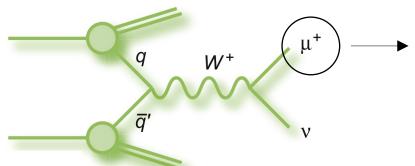

SM does not predict m<sub>W</sub> but relationship to other parameters

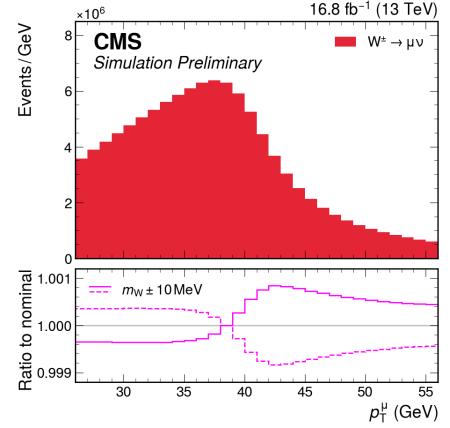

$$m_{\mathrm{W}}^{2} \left( 1 - \frac{m_{W}^{2}}{m_{Z}^{2}} \right) = \frac{\pi \alpha}{\sqrt{2} G_{\mu}} \frac{1}{1 - \Delta r}$$



- Possible BSM particles can modify relation
   m<sub>w</sub> can be determined indirectly in EW global fit
- Prediction:  $\Delta m_W^{SM} = 6 MeV$  more precise than direct measurements
- Call for direct measurements to over constrain SM and find cracks

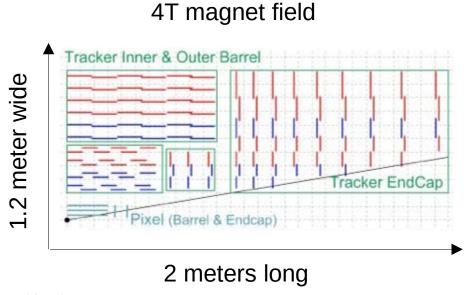


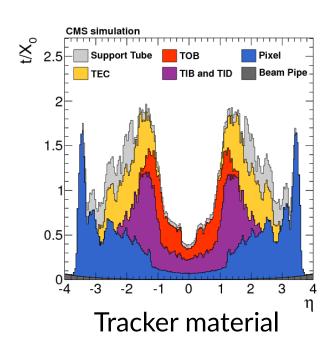


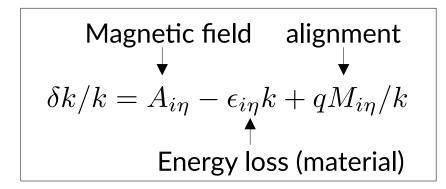



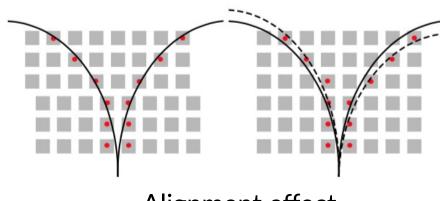

### Measurements at hadron colliders

At pp colliders m<sub>W</sub> is one of the most challenging measurements


- Measurement possible from partial information:  $m_T$  or  $p_T^e$
- LHC collected large amount of data
  - Use 16.8fb<sup>-1</sup> pp collision data set at 13TeV from 2016
- But higher pileup deteriorates p<sub>T</sub><sup>miss</sup> resolution
  - $m_T$  based measurement more challenging  $\rightarrow$  deferred for future
  - Muons can be measured best, using muon kinematics only
    - Per mille precision required

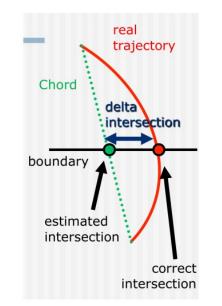


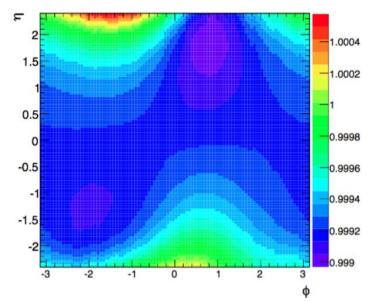



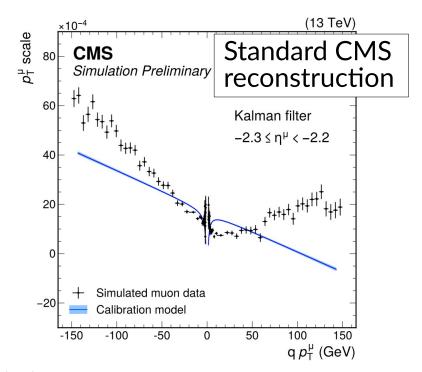


Fundamental to measurement as muon momentum uncertainty directly translates to mw uncertainty

- $\delta p_T < \approx 0.01\%$  required for  $\Delta m_W < \approx 8$  MeV calibration uncertainty
- Momentum from curvature of muon track in magnetic field using silicon tracker only
- Designed for  $J/\psi \rightarrow$  leaving Y(1S) and Z for validation
- Extrapolation via  $k \equiv 1/p_T$  parametrization model

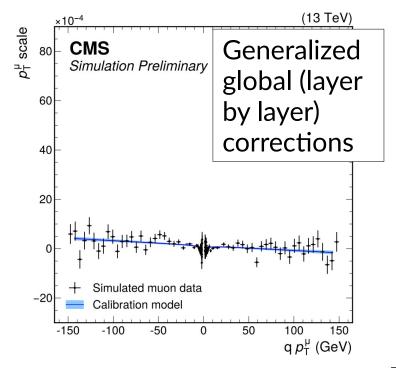





Standard CMS reconstruction breaks parametrization Restore parameterization


- 1) Improved detector modeling and track fit
- 2) Generalized global (layer by layer) corrections



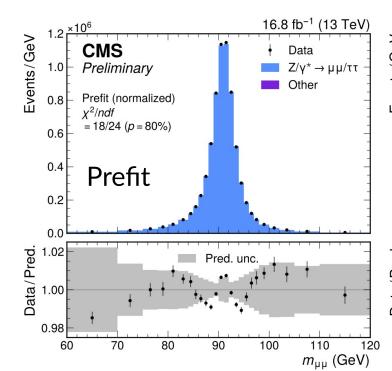


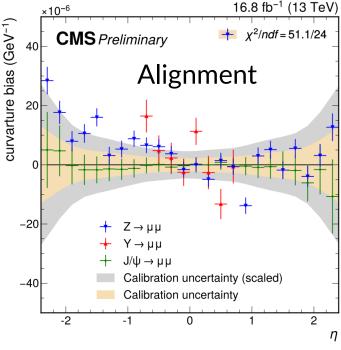


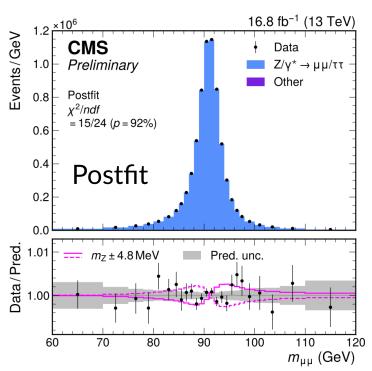




### Once parameterization restored


- Performed calibration on J/ $\psi$  binned in muon ( $\eta^+$ ,  $p_T^+$ ,  $\eta^-$ ,  $p_T^-$ )
- Assess closure on Y(1S) and Z data
  - Inflate uncertainties to cover possible systematic effects

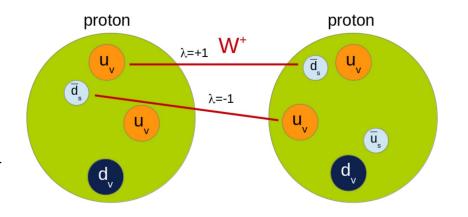

### Final validation by extracting Z mass


$$m_{\rm Z} - m_{\rm Z}^{\rm PDG} = -2.2 \pm 4.8 \,{\rm MeV}$$

Not an independent m<sub>z</sub> measurement (yet)

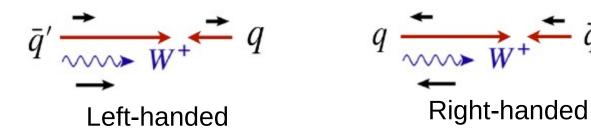
- Competitive m<sub>Z</sub> measurement feasible in the near future
- How about  $m_{top}$  from muon  $p_T$ ?



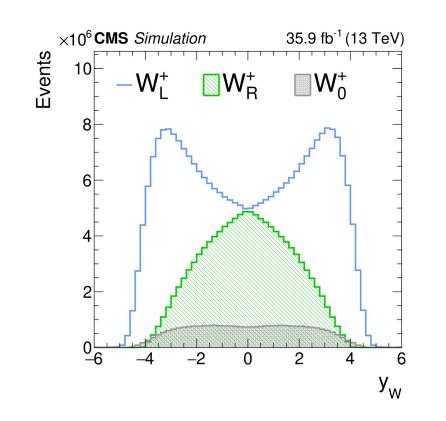





# Theory uncertainties


Measurement in  $p_T^{\mu}$  strongly relies on understanding of underlying boson kinematic

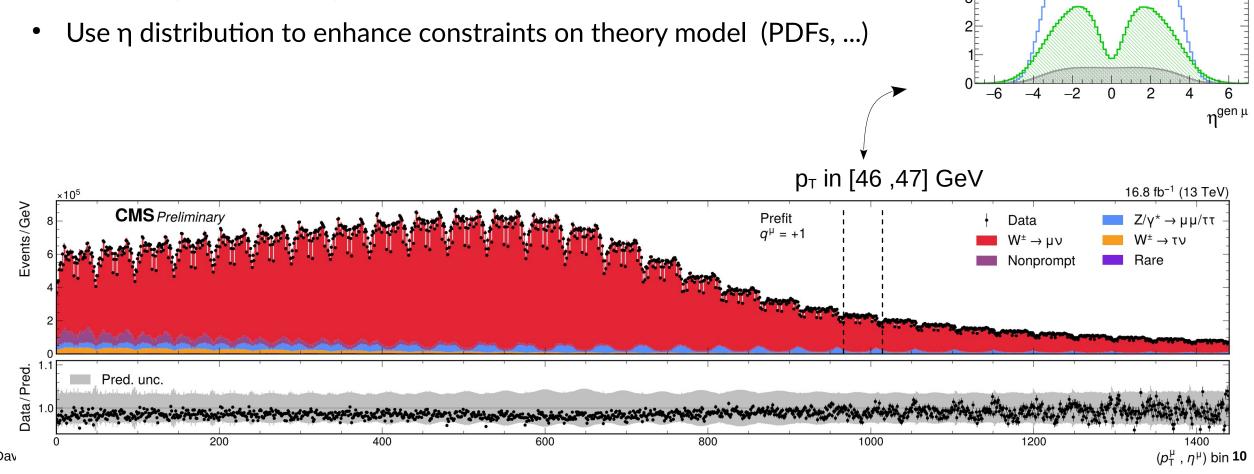
• Need to distinguish a variation of  $m_W$  from uncertainty in W  $p_T$ 




Use information from data – example: PDFs

- Due to pure left handed coupling, W helicity determined by its direction relative to incoming quark
- W helicity contains information about PDFs




Studied in W helicity analysis: <u>arXiv:2008.04174</u>



# Measurement strategy

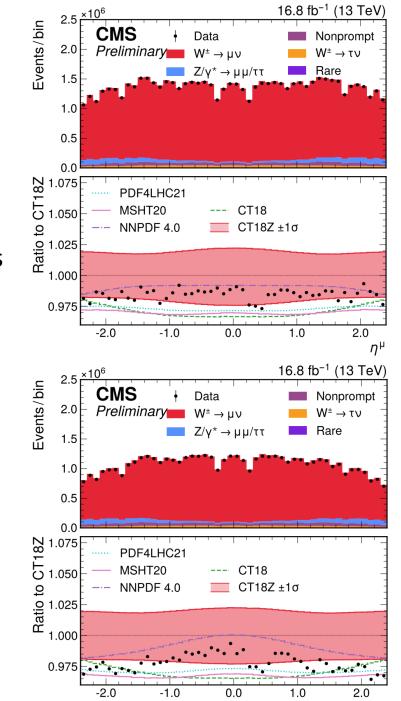
Exploit large dataset for maximal in-situ constraints on theoretical modeling Profile likelihood fit of single muon  $p_T$ ,  $\eta$ , charge distribution

Sensitivity to m<sub>W</sub> from p<sub>T</sub> distribution



×10<sup>6</sup> CMS Simulation

Events


35.9 fb<sup>-1</sup> (13 TeV)

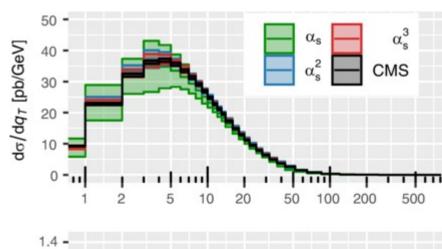
### Parton distribution functions

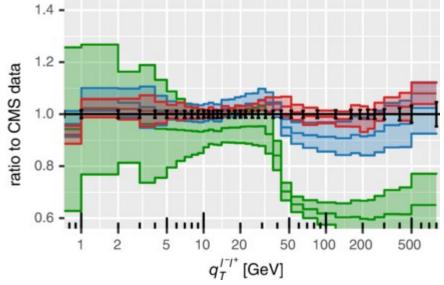
#### Performed bias studies on 7 modern PDF sets

- Use one PDF set to fit the central value of the others
- Observed shift in m<sub>W</sub> larger than PDF uncertainty
- Determine inflation factor on PDF uncertainties to cover other PDFs
- CT18Z overs all other sets without inflation → our nominal

| PDF set     | Scale factor | Impact in $m_W$ (MeV)          |                           |  |  |
|-------------|--------------|--------------------------------|---------------------------|--|--|
|             |              | Original $\sigma_{\text{PDF}}$ | Scaled $\sigma_{\rm PDF}$ |  |  |
| CT18Z       | -            | 4.4                            |                           |  |  |
| CT18        | _            | 4.6                            |                           |  |  |
| PDF4LHC21   | _            | 4.1                            |                           |  |  |
| MSHT20      | 1.5          | 4.3                            | 5.1                       |  |  |
| MSHT20aN3LO | 1.5          | 4.2                            | 4.9                       |  |  |
| NNPDF3.1    | 3.0          | 3.2                            | 5.3                       |  |  |
| NNPDF4.0    | 5.0          | 2.4                            | 6.0                       |  |  |




# QCD uncertainties


Uncertainties in theory typically larger than measurement

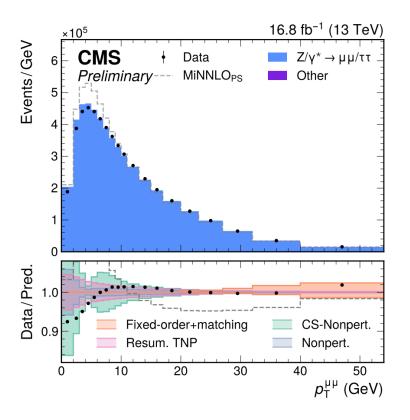
- In particular at low boson p<sub>T</sub>
- Common strategy is to correct (tune) model to Z data
- W and Z behave qualitatively the same
- But differences between W and Z may be relevant
- Once the model is corrected to Z data, no easy validation possible

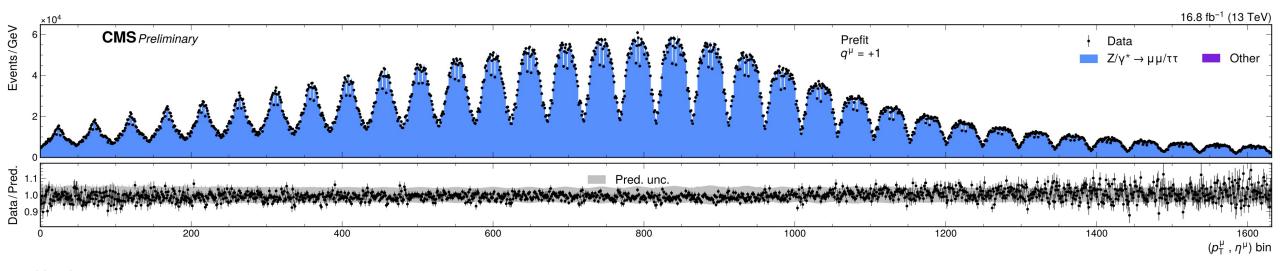
An alternative approach is followed

- m<sub>W</sub> extracted w/o use of Z in theory model
- Theory uncertainties in-situ constrained by W data
- Theory model validated using Z





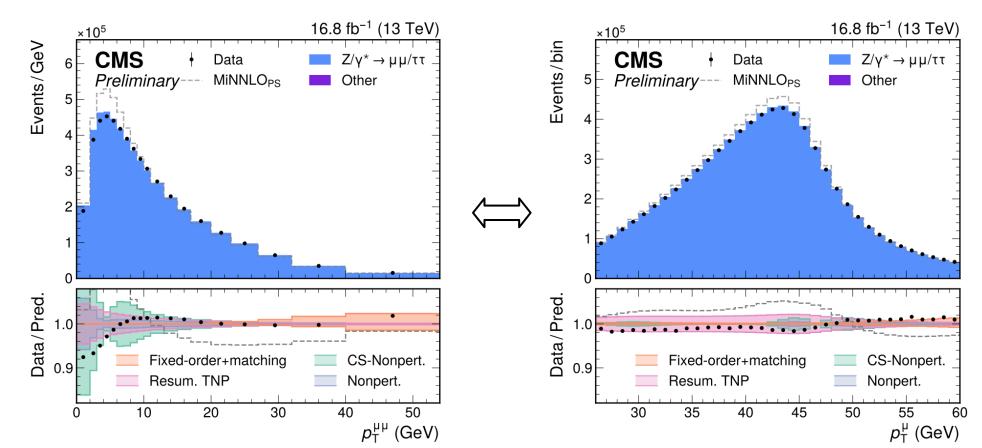

# Measurement strategy validation


### Z dilepton $p_T^Z$ , $|y^Z|$ analysis

Reconstruct Z kinematics with high precision

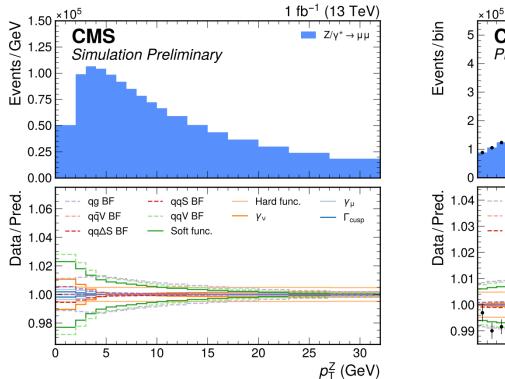
### W-like Z analysis

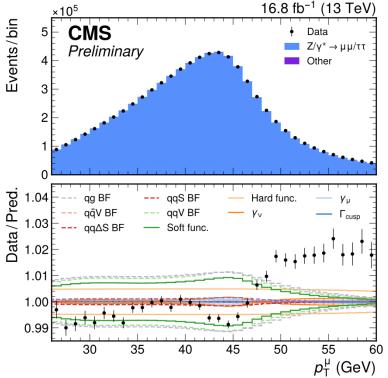
- Fitting single muon  $p_T^{\ell}$ ,  $\eta^{\ell}$ , charge
- Remove second muon and treat as missing energy





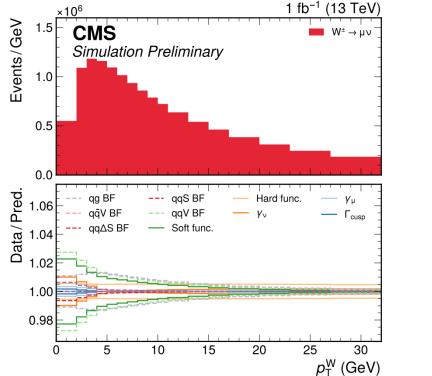

# Modeling of Z transverse momentum

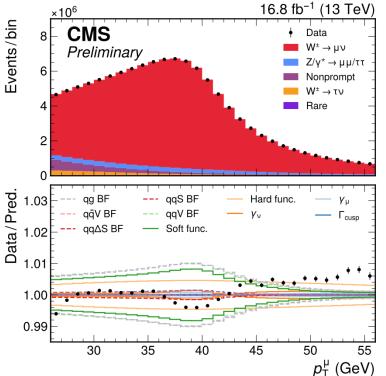

Different QCD effects relevant at different  $p_T^V$  regions and translate to  $p_T^\mu$  spectrum


- 1) Fixed order  $\rightarrow$  MiNNLO<sub>PS</sub> event generator with NNLO in  $\alpha_S$
- 2) Resummation  $\rightarrow$  corrected to N<sup>3</sup>LL from SCETlib
- 3) Non perturbative  $\rightarrow$  TMD inspired phenomenological model, in situ constrained by data



# Modeling of Z transverse momentum – resummation


- 2) Resummation expansion in  $log(p_T^V/m_V)$ , relevant at medium and  $low p_T^V$ 
  - Uncertainties from missing higher orders estimated using "theory nuisance parameters" (TNPs)
    - Exploit known structure of resummed calculation
    - Obtain basis of nuisance parameters with known functional shape → well suited for profiling

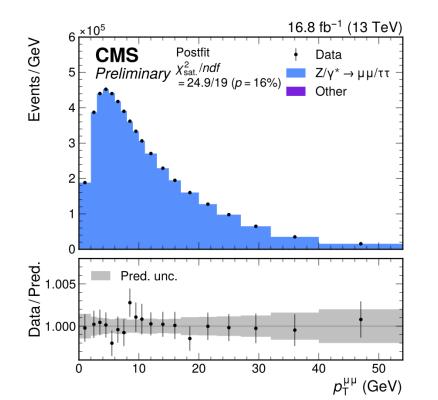


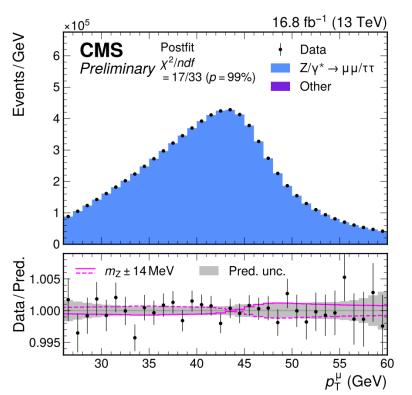



# Modeling of W transverse momentum – resummation

- 2) Resummation expansion in  $log(p_T^V/m_V)$ , relevant at medium and  $low p_T^V$
- Uncertainties from missing higher orders estimated using "theory nuisance parameters" (TNPs)
  - Exploit known structure of resummed calculation
  - Obtain basis of nuisance parameters with known functional shape  $\rightarrow$  well suited for profiling
  - Same structure for W and Z (although exact values may be different)



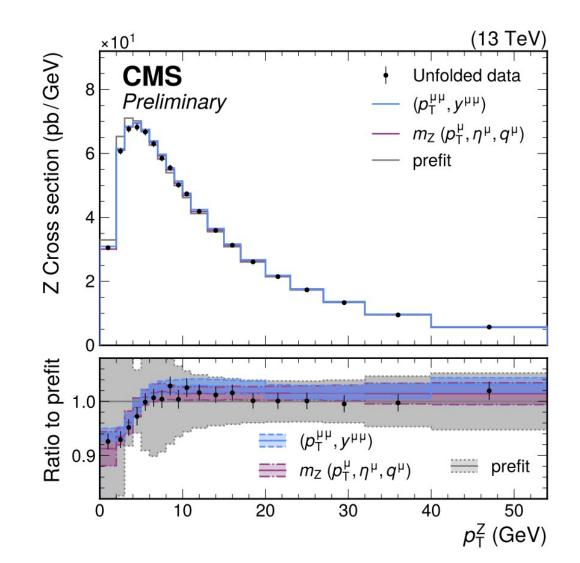




# Modeling of W, Z boson transverse momentum – validation

Theory model validated by fitting dilepton  $p_T^{\mu\mu}$  distribution

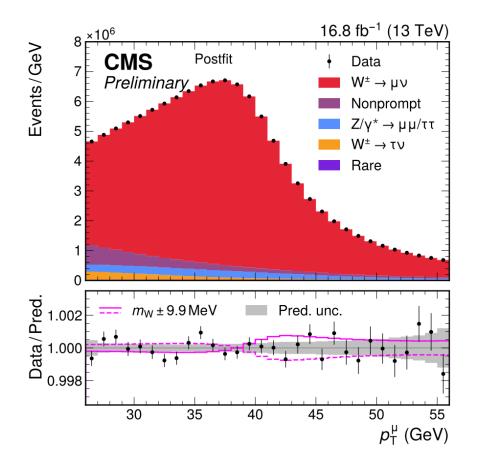
• Saturated likelihood test p-value of  $16\% \rightarrow Model$  able to describe the data W-like measurement yields  $m_Z$  compatible with PDG and our dilepton  $m_Z$ 

$$m_{\rm Z} - m_{\rm Z}^{\rm PDG} = -6 \pm 14 \,{\rm MeV}$$






# Theory model validation


Compare postfit  $p_T^Z$  distributions from W-like Z fit or direct dilepton  $p_T^Z$  y fit with unfolded data

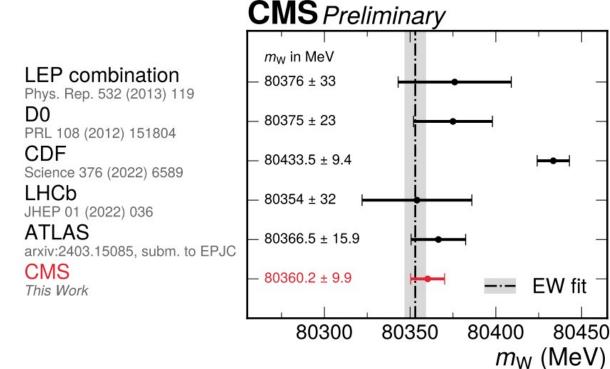
- Good qualitative agreement
- W-like Z fit to single letpon kinematics able to constrain theory uncertainties
  - → W fit to single lepton kinematics able to constrain theory uncertainties



### Result

$$m_{\rm W} = 80360.2 \pm 9.9 \, {\rm MeV}$$




| Source of uncertaintyNominal Nominal GlobalMuon momentum scale $4.8$ $4.4$ Muon reco. efficiency $3.0$ $2.3$ W and Z angular coeffs. $3.3$ $3.0$ Higher-order EW $2.0$ $1.9$ $p_T^V$ modeling $2.0$ $0.8$ PDF $4.4$ $2.8$ Nonprompt background $3.2$ $1.7$ Integrated luminosity $0.1$ $0.1$ MC sample size $1.5$ $3.8$ Data sample size $2.4$ $6.0$ Total uncertainty $9.9$ $9.9$ | Course of use combains                 | Impact (MeV) |        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|--------|--|--|
| Muon reco. efficiency $3.0$ $2.3$ W and Z angular coeffs. $3.3$ $3.0$ Higher-order EW $2.0$ $1.9$ $p_{\rm T}^{\rm V}$ modeling $2.0$ $0.8$ PDF $4.4$ $2.8$ Nonprompt background $3.2$ $1.7$ Integrated luminosity $0.1$ $0.1$ MC sample size $1.5$ $3.8$ Data sample size $2.4$ $6.0$                                                                                              | Source of uncertainty                  | Nominal      | Global |  |  |
| W and Z angular coeffs. $3.3$ $3.0$ Higher-order EW $2.0$ $1.9$ $p_{\rm T}^{\rm V}$ modeling $2.0$ $0.8$ PDF $4.4$ $2.8$ Nonprompt background $3.2$ $1.7$ Integrated luminosity $0.1$ $0.1$ MC sample size $1.5$ $3.8$ Data sample size $2.4$ $6.0$                                                                                                                                | Muon momentum scale                    | 4.8          | 4.4    |  |  |
| Higher-order EW $2.0$ $1.9$ $p_{\rm T}^{\rm V}$ modeling $2.0$ $0.8$ PDF $4.4$ $2.8$ Nonprompt background $3.2$ $1.7$ Integrated luminosity $0.1$ $0.1$ MC sample size $1.5$ $3.8$ Data sample size $2.4$ $6.0$                                                                                                                                                                    | Muon reco. efficiency                  | 3.0          | 2.3    |  |  |
| $p_{\rm T}^{\rm V}$ modeling2.00.8PDF4.42.8Nonprompt background3.21.7Integrated luminosity0.10.1MC sample size1.53.8Data sample size2.46.0                                                                                                                                                                                                                                         | W and Z angular coeffs.                | 3.3          | 3.0    |  |  |
| PDF 4.4 2.8 Nonprompt background 3.2 1.7 Integrated luminosity 0.1 0.1 MC sample size 1.5 3.8 Data sample size 2.4 6.0                                                                                                                                                                                                                                                             | Higher-order EW                        | 2.0          | 1.9    |  |  |
| Nonprompt background 3.2 1.7 Integrated luminosity 0.1 0.1 MC sample size 1.5 3.8 Data sample size 2.4 6.0                                                                                                                                                                                                                                                                         | $p_{\mathrm{T}}^{\mathrm{V}}$ modeling | 2.0          | 0.8    |  |  |
| Integrated luminosity0.10.1MC sample size1.53.8Data sample size2.46.0                                                                                                                                                                                                                                                                                                              | PDF                                    | 4.4          | 2.8    |  |  |
| MC sample size 1.5 3.8  Data sample size 2.4 6.0                                                                                                                                                                                                                                                                                                                                   | Nonprompt background                   | 3.2          | 1.7    |  |  |
| Data sample size 2.4 6.0                                                                                                                                                                                                                                                                                                                                                           | Integrated luminosity                  | 0.1          | 0.1    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                    | MC sample size                         | 1.5          | 3.8    |  |  |
| Total uncertainty 9.9 9.9                                                                                                                                                                                                                                                                                                                                                          | Data sample size                       | 2.4          | 6.0    |  |  |
| $\mathcal{J}$                                                                                                                                                                                                                                                                                                                                                                      | Total uncertainty                      | 9.9          | 9.9    |  |  |

Many additional studies and cross checks performed

# Summary & conclusions

First measurement of m<sub>W</sub> from CMS

- Most precise at LHC
- In agreement with the SM and measurements except CDF
- Document: [CMS-PAS-SMP-23-002]
- More complete <u>seminar</u> (recorded)



Major advances in theory modeling and muon calibration

Setting the base for further precision measurements

# Backup

# Comparison with ATLAS

Compared to ATLAS, in addition to our larger data set

- Better constraints on theory (PDFs, non perturbative, ...)
- Reduced EW unc. due to newer photos version
- Total calibration + muon eff. "only" 10% better,
   but Z-independent scale calibration, physics driven model

| Source of uncertainty CMS              | Impact (MeV) |        |  |  |
|----------------------------------------|--------------|--------|--|--|
| . MILLE OF THE CHAILIN                 | Vominal      | Global |  |  |
| Muon momentum scale                    | 4.8          | 4.4    |  |  |
| Muon reco. efficiency                  | 3.0          | 2.3    |  |  |
| W and Z angular coeffs.                | 3.3          | 3.0    |  |  |
| Higher-order EW                        | 2.0          | 1.9    |  |  |
| $p_{\mathrm{T}}^{\mathrm{V}}$ modeling | 2.0          | 0.8    |  |  |
| PDF                                    | 4.4          | 2.8    |  |  |
| Nonprompt background                   | 3.2          | 1.7    |  |  |
| Integrated luminosity                  | 0.1          | 0.1    |  |  |
| MC sample size                         | 1.5          | 3.8    |  |  |
| Data sample size                       | 2.4          | 6.0    |  |  |
| Total uncertainty                      | 9.9          | 9.9    |  |  |
|                                        |              |        |  |  |

| Unc. [MeV]                    |      |      |      | '    |     |     |     |     |     |      |     |     |     |
|-------------------------------|------|------|------|------|-----|-----|-----|-----|-----|------|-----|-----|-----|
| $p_{\mathrm{T}}^{\ell}$ ATLAS | 16.2 | 11.1 | 11.8 | 4.9  | 3.5 | 1.7 | 5.6 | 5.9 | 5.4 | 0.9  | 1.1 | 0.1 | 1.5 |
| $m_{ m T}$                    | 24.4 | 11.4 | 21.6 | 11.7 | 4.7 | 4.1 | 4.9 | 6.7 | 6.0 | 11.4 | 2.5 | 0.2 | 7.0 |
| Combined                      | 15.9 | 9.8  | 12.5 | 5.7  | 3.7 | 2.0 | 5.4 | 6.0 | 5.4 | 2.3  | 1.3 | 0.1 | 2.3 |

# Comparison with CDF

CDF has advantages from  $p\bar{p}$  collider for theory, and from low tracking material for calibration

But they didn't do a W-like Z measurement

| Source                                        | Uncertainty (MeV) |
|-----------------------------------------------|-------------------|
| Lepton energy scale                           | 3.0               |
| Lepton energy resolution                      | 1.2               |
| Recoil energy scale                           | 1.2               |
| Recoil energy resolution                      | 1.8               |
| Lepton efficiency                             | 0.4               |
| Lepton removal                                | 1.2               |
| Backgrounds                                   | 3.3               |
| $p_{\mathrm{T}}^{Z}$ model                    | 1.8               |
| $p_{\mathrm{T}}^{W}/p_{\mathrm{T}}^{Z}$ model | 1.3               |
| Parton distributions                          | 3.9               |
| QED radiation                                 | 2.7               |
| W boson statistics                            | 6.4               |
| Total                                         | 9.4               |

| Course of an oomining                  | CMS Impact | (MeV)  |
|----------------------------------------|------------|--------|
| Source of uncertainty                  | Nominal    | Global |
| Muon momentum scale                    | 4.8        | 4.4    |
| Muon reco. efficiency                  | 3.0        | 2.3    |
| W and Z angular coeffs                 | s. 3.3     | 3.0    |
| Higher-order EW                        | 2.0        | 1.9    |
| $p_{\mathrm{T}}^{\mathrm{V}}$ modeling | 2.0        | 0.8    |
| PDF                                    | 4.4        | 2.8    |
| Nonprompt backgroun                    | d 3.2      | 1.7    |
| Integrated luminosity                  | 0.1        | 0.1    |
| MC sample size                         | 1.5        | 3.8    |
| Data sample size                       | 2.4        | 6.0    |
| Total uncertainty                      | 9.9        | 9.9    |

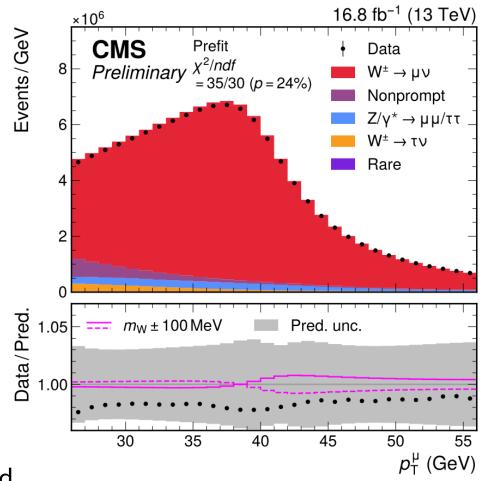
### **Event selection**

Select isolated muons from single muon trigger

• 26 <  $p_T$  < 56;  $|\eta|$  < 2.4; multiple quality criteria

Transverse mass cut of  $m_T(\mu, MET) > 40 \text{GeV}$  to reject QCD multijet events with nonprompt muons (and to predict them)

Using DNN based DeepMET algorithm


Selected events are

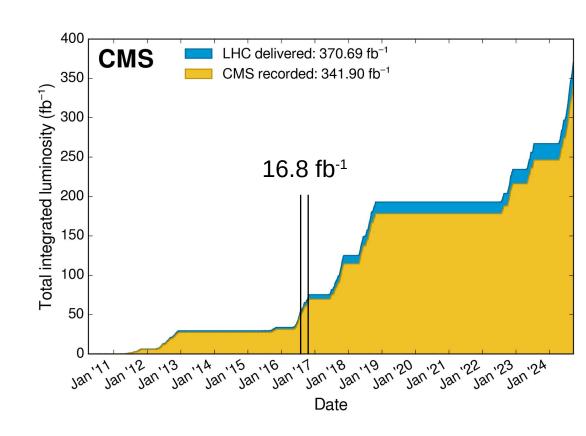
- 89% W→ μν
- 4% Z→μμ/ττ
- 2% W→τv
- <1% Rare</p>
- 4% Nonprompt

From simulation

From data via "extended" ABCD method

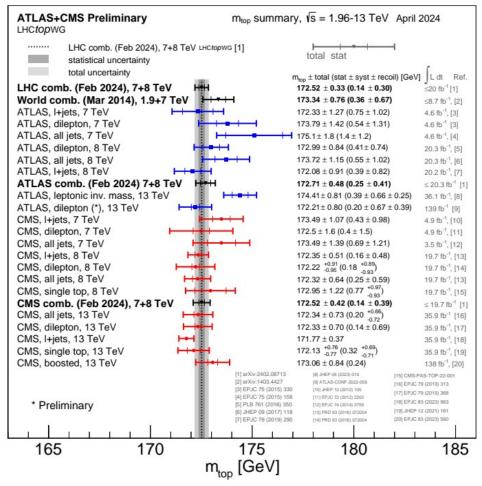
Verified in secondary vertex control region

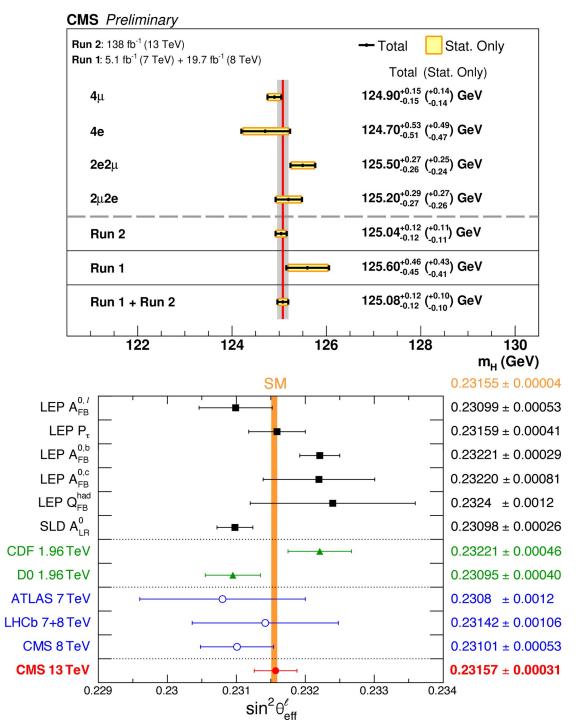



### The Data

Using Run 2 pp collision data with  $\sqrt{s}$  = 13TeV taken in second half of 2016

- Well-understood part of Run 2 data
- On average 30 pileup interactions
- "Only" 10% of 13TeV data but largest data sample ever used for a W boson mass measurement
- >100 million selected events for us, HL LHC is now
  - Challenging, but also offers new opportunities


### General strategy:


Exploit large dataset for maximal in-situ constraints on theoretical modeling



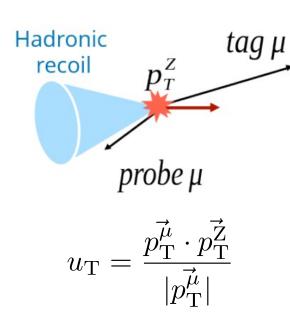
### **Precision SM measurements**

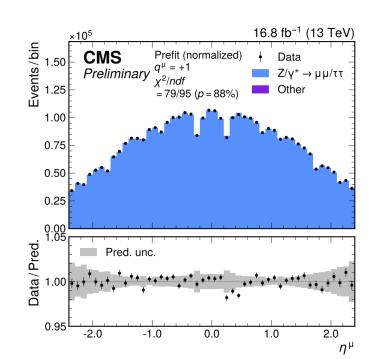
# Recent progress in precision measurements of SM parameters





### Muon selection efficiencies


Correct simulated samples with muon selection efficiency scale factors


- Inner/outer tracking, selection, isolation and trigger efficiencies
- Measured in  $Z\rightarrow \mu\mu$  data using tag and probe procedure
- Differentially in muon  $p_T$   $\eta$ , charge
- Smoothing procedure in  $p_T$  to mitigate statistical uncertainties

Isolation sensitive to hadronic recoil of Z (and W)

- Probe muon at low p<sub>T</sub> more likely to fall in hadronic recoil
- Different recoil in W and Z events
- Isolation and trigger efficiencies also measured in boson recoil u<sub>T</sub>

Further corrections for muon prefiring



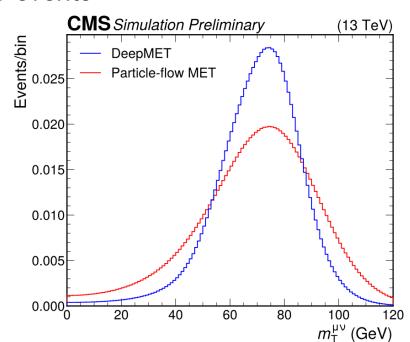


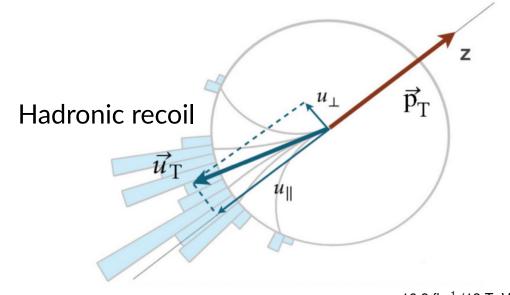
### Muon veto efficiencies

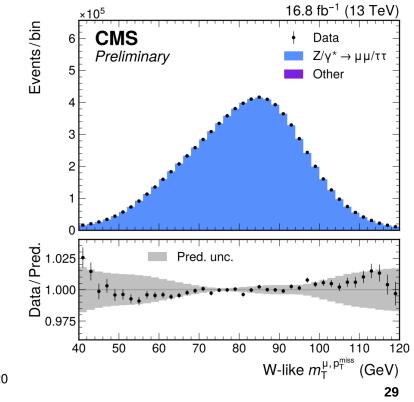
Mainly  $Z \rightarrow \mu\mu$  events with both muons in acceptance but one is not reconstructed or identified

- Shape of background similar to W but shifted to lower p<sub>T</sub>
  - can introduce large bias on m<sub>W</sub> if not corrected
- Delicate topic, can not be tested in W-like Z measurement
- Measured based on generator level quantities
- Alternative veto selection and scale factors as cross check

### Recoil calibration


DNN based algorithm (DeepMET) to estimate hadronic recoil for missing transverse energy


- Improved resolution and efficiency for QCD multiject background rejection
- Calibrated in  $Z \rightarrow \mu\mu$  events


Mitigate difference between Z and W events

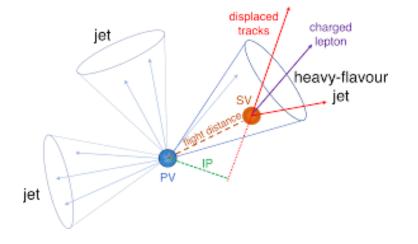
- Different vertex efficiency
  - → Vertex agnostic algorithm

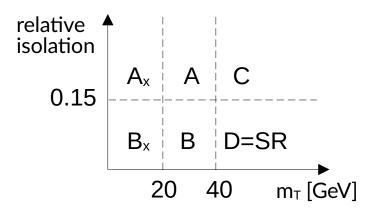
Resulting uncertainties negligible on final measurement (<0.3MeV)








# Nonprompt background


QCD multijet events with muons that are not prompt

- B hadron decays, Light meson in flight decays, ...
- Large cross section and insufficient modeling

### Estimated from sideband regions in data

- Extended ABCD method with 3 bins m<sub>T</sub> and 2 bins in isolation
- Evaluated in fine bins in  $p_T$ ,  $\eta$ , charge
- Prompt background in sideband region subtracted from simulation, repeated for each systematic variation





$$D = C \cdot \underbrace{\frac{A_x B^2}{B_x A^2}}_{\text{fakerate}}$$

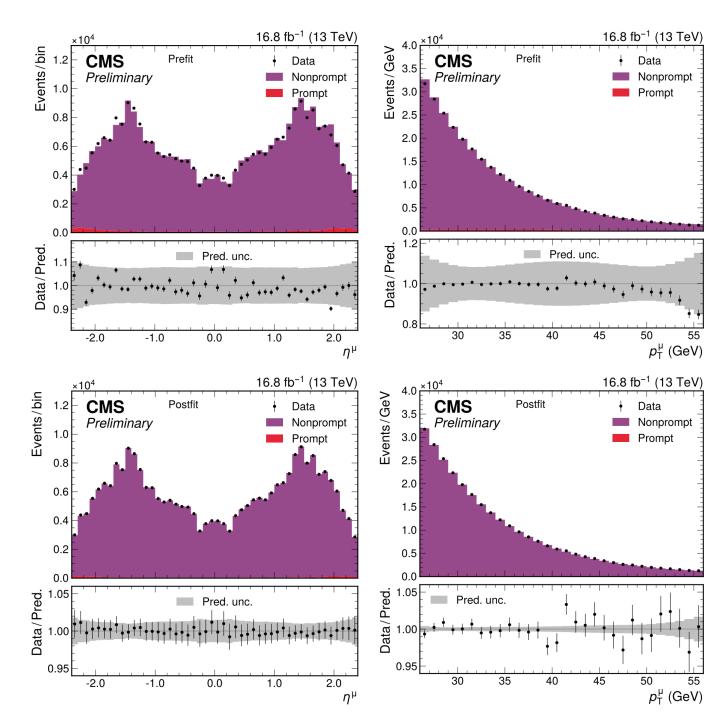
# Nonprompt background

Smoothing each sideband region with exponential of a polynomial to maintain good statistical properties

Agreement between prediction and observation checked in QCD simulation

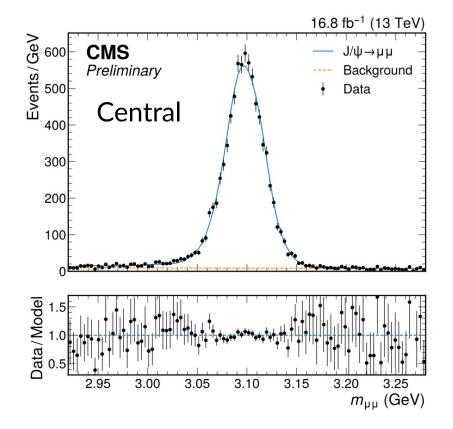
- Total correction factor of 0.85 derived
- Additional uncertainties assigned to cover residual shape and normalization differences

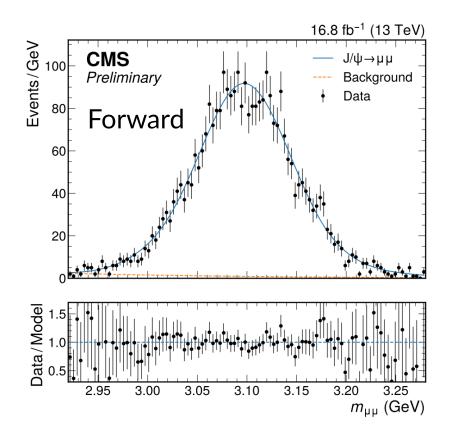
 $f_i(p_{\mathrm{T}}) = e^{P_i(p_{\mathrm{T}})}$  $f_{\mathrm{D}}(p_{\mathrm{T}}) = e^{\sum_i w_i P_i(p_{\mathrm{T}})}$ 


# Nonprompt background

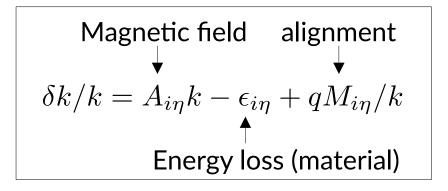
Estimation validated in secondary vertex region in data

- Events with a muon coming from from a secondary vertex
- Very pure in QCD multijet events


Performed fit in bins of ( $p_T$ ,  $\eta$ , charge)


- Good visible agreement
- p-value of 98%




After restoring parameterization, fitting model to  $J/\psi$  data

- Fits are finely binned in di-muon kinematics  $(\eta^+, p_T^+, \eta^-, p_T^-)$
- Extract J/ψ mass from peak of distribution

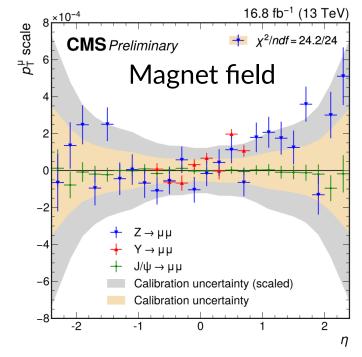


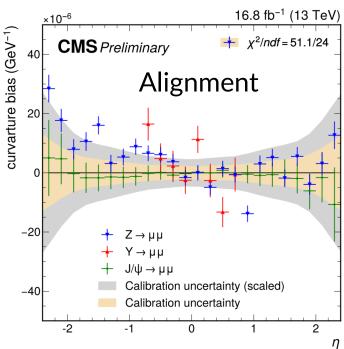


Extracted J/ $\psi$  mass values translated into model parameters via  $\chi^2$  fit



### Muon momentum calibration


Assess calibration closure by re-evaluating model on Y(1S) and Z data


- Y only in central due to worse resolution at high  $|\eta|$  and overlapping peaks
- No significant bias in magnet field term
- Slight tension in alignment term

Uncertainty on calibration parameters from  $J/\psi$  inflated by factor of 2.1

- Cover all possible biases
- Proxy for missing systematic uncertainties

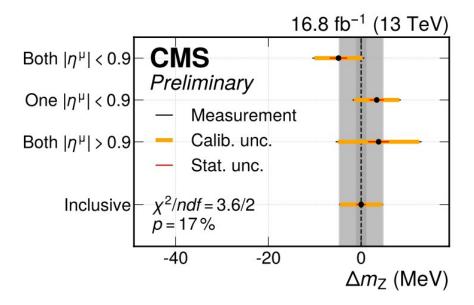
| Source of uncertainty                             | Nuisance parameters | Uncertainty in $m_W$ (MeV) |
|---------------------------------------------------|---------------------|----------------------------|
| $J/\psi$ calibration stat. (scaled $\times 2.1$ ) | 144                 | 3.7                        |
| Z closure stat.                                   | 48                  | 1.0                        |
| Z closure (LEP measurement)                       | 1                   | 1.7                        |
| Resolution stat. (scaled $\times 10$ )            | 72                  | 1.4                        |
| Pixel multiplicity                                | 49                  | 0.7                        |
| Total                                             | 314                 | 4.8                        |

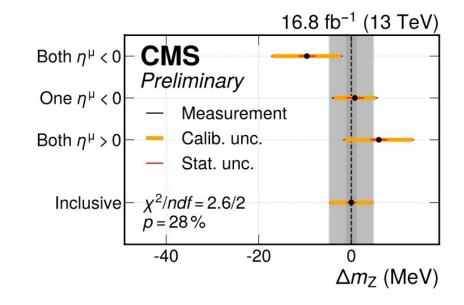




### Muon momentum resolution calibration

Resolution corrected with similar parameterized model


$$\left(\frac{\sigma_{p_T}}{p_T}\right)^2 = a^2 + c^2 \cdot p_T^2 + \frac{b^2}{1 + \frac{d^2}{p_T^2}}$$
 Correlations


Multiple scattering Hit resolution

- Extracted from J/ψ and Z data
- Negligible impact on m<sub>z</sub> or m<sub>w</sub>

#### Muon momentum calibration

Assigning separate mass parameter in different phase space regions





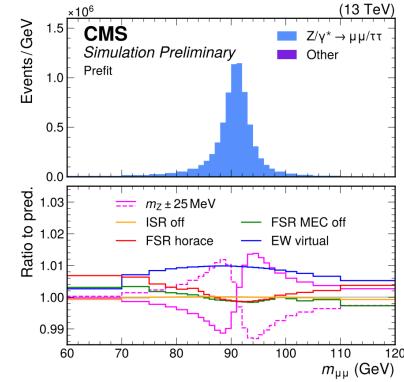
#### Electroweak effects

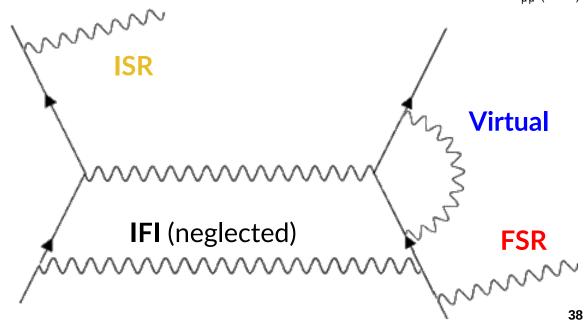
Main EW effect from QED FSR included in simulation

• Using Photos++ with QED LL including  $\gamma \rightarrow ee/\mu\mu$  pair production and matrix element corrections (MEC) ~NLO QED

Factorize higher order EW uncertainties:

ISR < 0.1 MeV

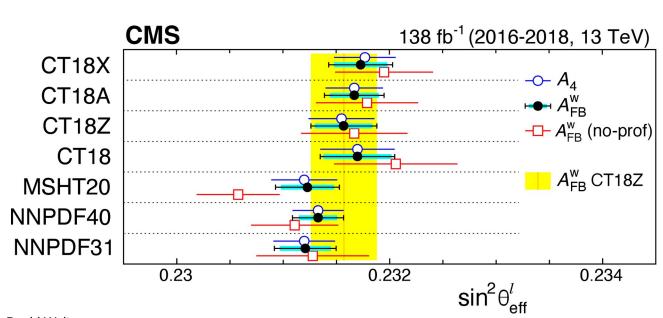

Switching on/off QED ISR in pythia

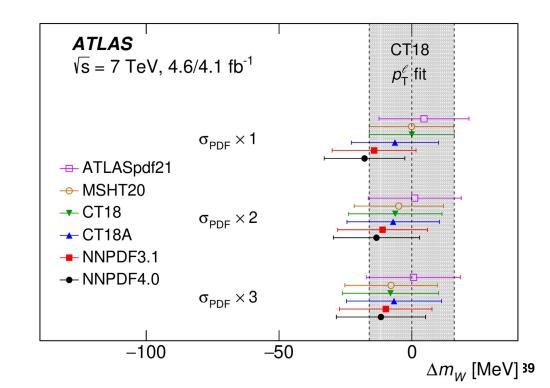

FSR ~ 0.3 MeV

- Horace QED FSR
- Photos++ MEC off

Virtual ~1.9 MeV

- Z: Powheg NLO+HO EW
- W: ReneSANCe NLO+HO EW

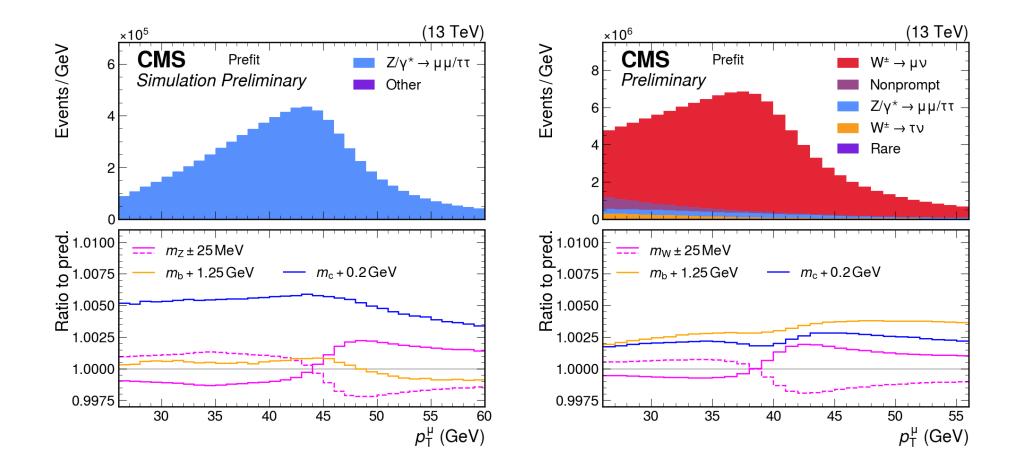



### Lepton transverse momentum based m<sub>w</sub> measurement

At the LHC, boson production described in parton distribution functions (PDFs)

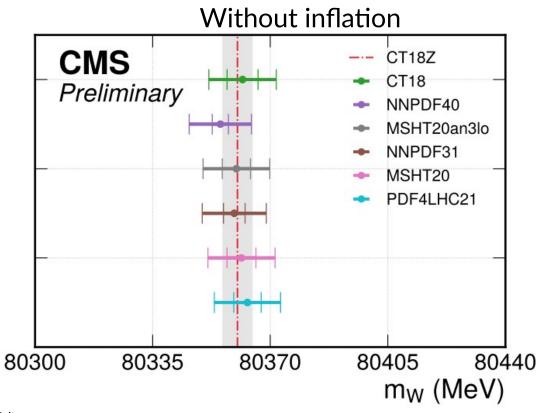
- Previous measurements have shown large spread for different PDF sets
  - E.g. missing theory uncertainties in PDFs
  - But can be directly constrained from data

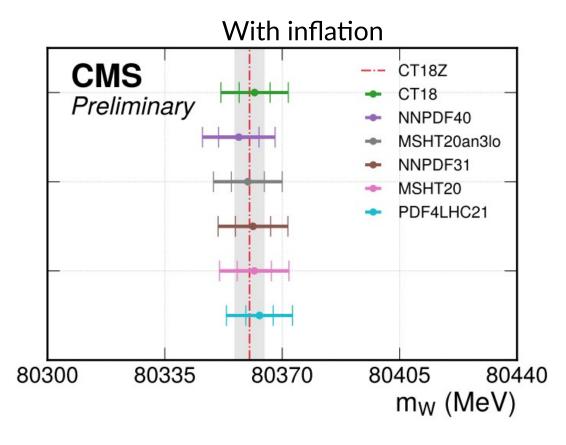





## Heavy quark mass effects

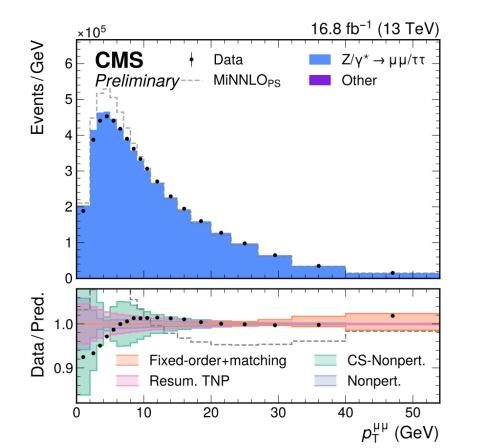
Different contributions from heavy flavor quarks in production of W and Z

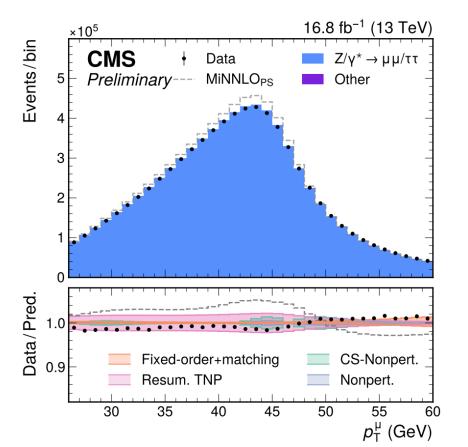

Effect of quarks masses in variable flavor scheme PDFs accounted for




#### Results from different PDF sets

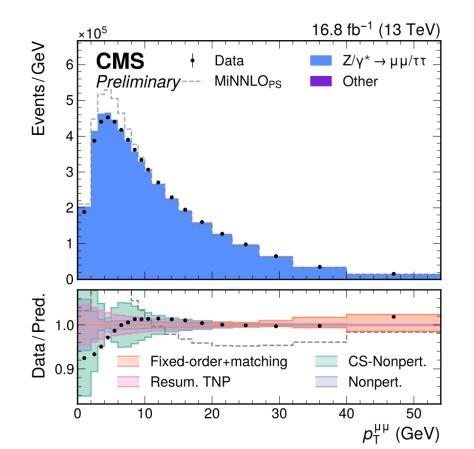
#### Measurement repeated for different PDF sets

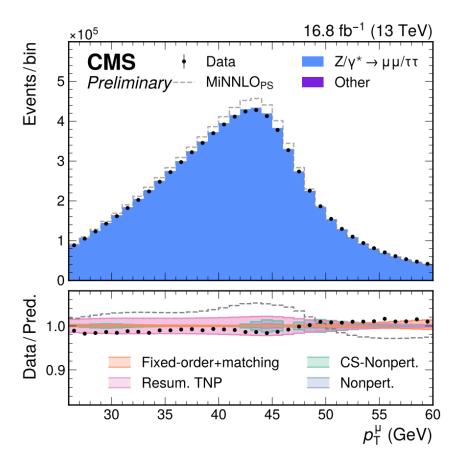

- If not inflated, spread larger than assigned uncertainty
- If inflated, consistent values





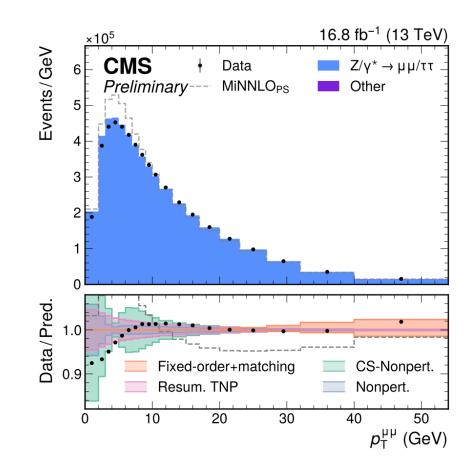

### Modeling of W, Z boson transverse momentum – fixed order as


- 1) Fixed order expansion in  $a_s$ , relevant at  $p_T^{V} > 30$ GeV
- Nominal prediction from MiNNLO<sub>PS</sub> event generator has NNLO in α<sub>S</sub>
- Missing higher orders subdominant source of uncertainty
- Assessed by varying  $\mu_R$  and  $\mu_F \rightarrow$  also used for angular coefficients






## Modeling of W, Z boson transverse momentum – fixed order as


- 2) Resummation expansion in  $log(p_T^V/m_V)$ , relevant at medium and  $low p_T^V$ 
  - Nominal prediction corrected with N<sup>3</sup>LL from SCETlib

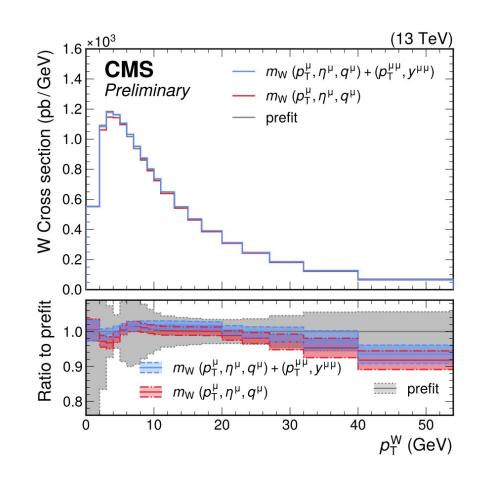




## Modeling of W, Z boson transverse momentum – non perturbative

- 3) Non perturbative, relevant at  $p_T^z < 10$ GeV
- E.g. Residual transverse motion of partons inside proton (intrinsic  $k_T$ )
- Active field of research (TMD PDFs, lattice QCD)
- Using phenomenological models to be tuned to the data
- Collins–Soper (CS) kernel, universal for W and Z
- Others (Intrinsic  $k_T$ ) not universal for W and Z
- Using SCETlib program with loosely constrained to minimal nonperturbative effects




# Simultaneous fit of W and Z dilepton

Extract  $m_W$  by simultaneously fitting single lepton  $p_T$ ,  $\eta$ , charge and dilepton  $p_T$ ,  $\gamma$  distributions Obtained result w.r.t. nominal fit  $\Delta m_W = +0.6$  MeV

- Decreased uncertainty to 9.6MeV
- Postfit p<sub>T</sub><sup>W</sup> distribution largely consistent with nominal fit

Only used as cross check since correlations of theory uncertainties between W and Z are less well understood

E.g. no complete flavor dependent model



# Helicity cross section fit

in W rest frame

W production at LHC described by a decomposition into angular coefficients using spherical harmonics of second order

If angular coefficients and unpolarized cross section are known for all values of  $p_T^W$ ,  $y^W$  and W charge, muon kinematics are known

Idea: simultaneous extraction of  $m_W$  and helicity cross sections in bins of  $p_T^W$ ,  $y^W$ , charge

Reduced theory/model dependence for larger statistical uncertainty

# Angular coefficients

W production at LHC described by a decomposition into angular coefficients using spherical harmonics of second order

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}m\,\mathrm{d}y}\underbrace{\mathrm{d}\cos\theta^{*}\,\mathrm{d}\phi^{*}} = \frac{3}{16\pi}\underbrace{\frac{\mathrm{d}\sigma_{\mathrm{UL}}}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}m\,\mathrm{d}y}} \left[ (1+\cos^{2}\theta^{*}) + \sum_{i=0}^{7} \underbrace{A_{i}(p_{\mathrm{T}},m,y)} \cdot \underbrace{P_{i}(\cos\theta^{*},\phi^{*})} \right]$$

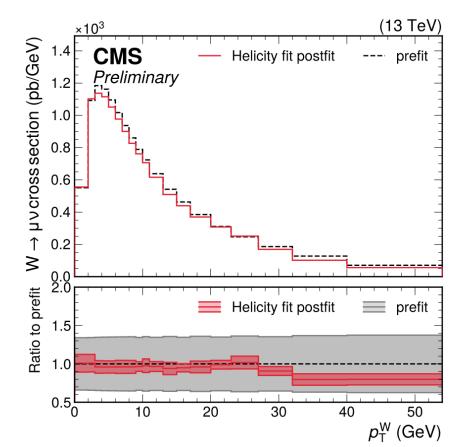
W differential cross section

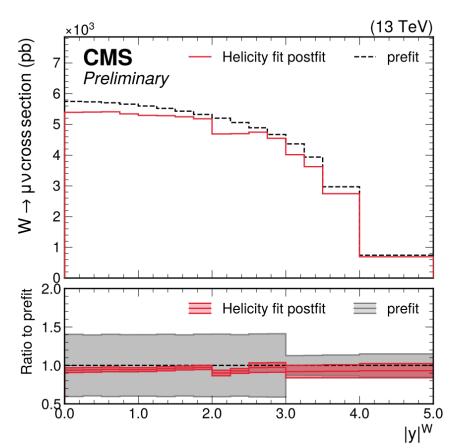
Decay angles from muons in W rest frame

Unpolarized cross section

Angular coefficients encode W polarization

Spherical harmonics encode W decay


Angular coefficients describe translation from  $p_T^{V}$  to  $p_T^{\mu}$  spectrum Modeled with NNLO accuracy in  $a_S$  from MiNNLO<sub>PS</sub> event generator


• Scale variations  $\mu_R$  and  $\mu_F$  decorrelated for  $A_i$  to account for missing higher orders

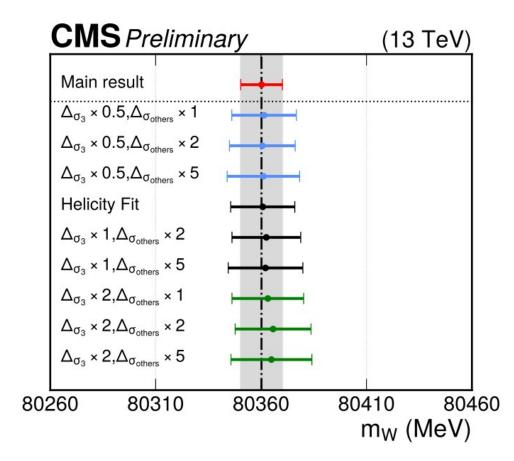
## Helicity cross section fit

Limited sensitivity to constrain all components in current fit

- Only consider  $\sigma_0$   $\sigma_4$
- Regularize with constraints to nominal predictions
- Relevant theory uncertainties retained






# Helicity cross section fit

Consistent result obtained

$$m_{\rm W} = 80360.9 \pm 15.2 \,{\rm MeV}$$

Measured W mass stable vs. magnitude of prefit uncertainties  $\sigma_3$  more sensitive to W mass and less well constrained

scaled independently from everything else



#### **Uncertainties**

#### Nominal

- Change in m<sub>w</sub> when varying systematic group by 1σ
- Correlations across different sources
- Statistical uncertainty in case of no systematics

#### Global

- Systematic uncertainties constrained by data are counted as statistical
- Different sources are uncorrelated
- Statistical uncertainty is expected spread of result

Difference between nominal and global impacts indicate level of constraints

| Source of uncertainty                  | Impact (MeV) |        |
|----------------------------------------|--------------|--------|
|                                        | Nominal      | Global |
| Muon momentum scale                    | 4.8          | 4.4    |
| Muon reco. efficiency                  | 3.0          | 2.3    |
| W and Z angular coeffs.                | 3.3          | 3.0    |
| Higher-order EW                        | 2.0          | 1.9    |
| $p_{\mathrm{T}}^{\mathrm{V}}$ modeling | 2.0          | 0.8    |
| PDF                                    | 4.4          | 2.8    |
| Nonprompt background                   | 3.2          | 1.7    |
| Integrated luminosity                  | 0.1          | 0.1    |
| MC sample size                         | 1.5          | 3.8    |
| Data sample size                       | 2.4          | 6.0    |
| Total uncertainty                      | 9.9          | 9.9    |

#### Some technical remarks

In total, >4000 nuisance parameters

Fitted distribution with >2000 bins

Fast turnaround has been essential to enabling an analysis at this level of complexity

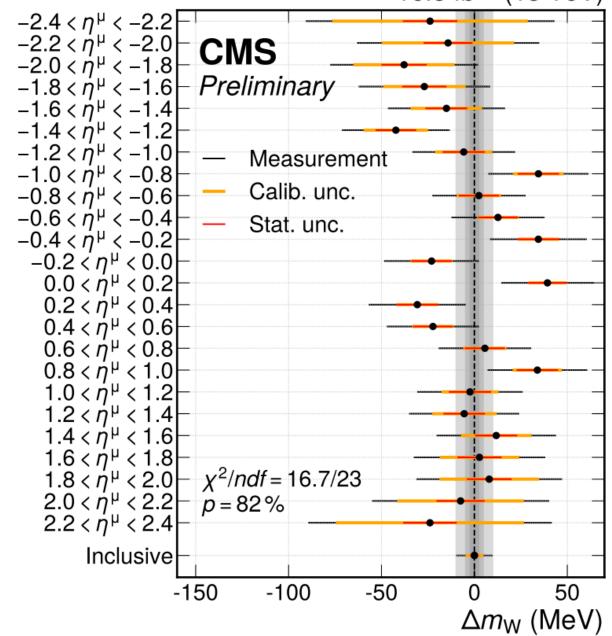
- Multi-threaded RDataFrame to process events to high-dimensional boost histograms
- Tensorflow based profile likelihood fit
- Full analysis runs in ~2 hours

| Systematic uncertainties                 | W-like $m_Z$ | $m_{\mathrm{W}}$ |
|------------------------------------------|--------------|------------------|
| Muon efficiency                          | 3127         | 3658             |
| Muon eff. veto                           | _            | 531              |
| Muon eff. syst.                          | 343          |                  |
| Muon eff. stat.                          | 2784         |                  |
| Nonprompt background                     | _            | 387              |
| Prompt background                        | 2            | 3                |
| Muon momentum scale                      | 338          |                  |
| L1 prefire                               | 14           |                  |
| Luminosity                               | 1            |                  |
| PDF (CT18Z)                              | 60           |                  |
| Angular coefficients                     | 177          | 353              |
| W MINNLO <sub>PS</sub> $\mu_F$ , $\mu_R$ | _            | 176              |
| Z MINNLO <sub>PS</sub> $\mu_F$ , $\mu_R$ | 176          |                  |
| PYTHIA shower $k_{\rm T}$                | 1            |                  |
| $p_{\mathrm{T}}^{\mathrm{V}}$ modeling   | 22           | 32               |
| Nonperturbative                          | 4            | 10               |
| Perturbative                             | 4            | 8                |
| Theory nuisance parameters               | 10           |                  |
| c, b quark mass                          | 4            |                  |
| Higher-order EW                          | 6            | 7                |
| Z width                                  | 1            |                  |
| Z mass                                   | 1            |                  |
| W width                                  | _            | 1                |
| W mass                                   | -            | 1                |
| $\sin^2 \theta_W$                        | 1            |                  |
| Total                                    | 3750         | 4859             |

#### Further cross checks

Separate m<sub>W</sub> parameters defined in different phase space regions gives good compatibility

Measurements of mass difference between


•  $\eta$ <0 and  $\eta$ >0: 5.8 ± 12.4 MeV

Central and forward η: 15.3 ± 14.7 MeV

• W<sup>+</sup> and W<sup>-</sup>:  $57 \pm 30 \text{ MeV}$ 

Comment on charge difference

- Correlation between m<sub>W</sub><sup>+</sup> and m<sub>W</sub><sup>-</sup> is -40%
- But correlation between m<sub>W</sub> and m<sub>W</sub><sup>+</sup> m<sub>W</sub><sup>-</sup> is 2%

