

The next AWAKE runs: technological advancements, scientific merit, and expected parameter reach

Patric Muggli

MAX-PLANCK-INSTITUT FÜR PHYSIK

1/24

RESULTS RUN 1,2a,b

Summary & Conclusions

A WA-KH

- AWAKE is on schedule and achieved all milestones
 - Run 1 Run 2a programs complete
 - + many additional physics/technology studies performed
 - First promising results on Run 2b

AWAKE scientific results

- Impact the wakefield community
- Lead to many publications in high impact journals
- Almost all of them have early-career researchers as first authors

Self-modulator demonstrated after Run 2b (2024)

Wakefield physics questions specific to the resonant excitation scheme

- Driver preparation → Self-modulation
- Wakefield control → Seeding
- 🔹 Witness acceleration -> External injection 🚽
- Maintain wakefields → Density step @
- Quality → can the quality of the accelerated bunch be controlled? → Run 2c
- Scalability → can the acceleration be scaled?

→ Run 2d

M. Turner

05.02.2024

Plan for Run 2c,d based on successful Run 1,2a,b results (Edda, Marlene)

♦ Clear and solid plan towards a scalable acceleration system

develop all technical components required

♦Identify challenges:

♦ baseline plan for Run 2c

 \diamond explore options for Run 2d

♦Plan:

♦ includes numerous topics relevant to all plasma-based accelerators (HEP)

Includes technological developments

 \diamond aim at parameters for fixed target experiments with e⁻

 \diamond Goal: propose particle physics experiments in 2030's

C P. Muggli

© P. Muggli

**SM: Self-Modulation

© P. Muggli

© P. Muggli

RUN 2c: e⁻-EXTERNAL INJECTION EXPERIMENT

RUN 2c: e⁻-EXTERNAL INJECTION EXPERIMENT

FUNCTIONS

RUN 2c BASELINE

P. Muggli, Collab meeting, 03/11/2024

PARAMETERS RUN 2c: RUBIDIUM PLASMA

PARAMETERS RUN 2c: SEEDING

A WAKE

 \diamond e-bunch seeding

♦ entire p⁺ bunch self-modulated

SSN

9/24

PARAMETERS RUN 2c: GAP BETWEEN PLASMAS

♦ Continuous transverse evolution of the p+ bunch in the (no plasma, vacuum) gap
♦ Must minimize gap length to maximize wakefields

♦Integration

10/24

BASE LINE, RUN 2c: INJECTOR(S)

In the lab!

BASE LINE, RUN 2c: INJECTOR(S), DESIGNED

In the lab!

AWAKE

BASE LINE, RUN 2c: INJECTOR(S), DESIGNED

P. Muggli, Collab meeting, 03/11/2024

BASE LINE, RUN 2c: INJECTOR(S), DESIGNED

RUN 2c: INJECTION REGION

13/24

PARAMETERS RUN 2c: INJECTION/ACCELERATION

PARAMETERS RUN 2c: INJECTION/ACCELERATION

RUN 2c: INJECTION DIAGNOSTICS

DiAGNOSTICS: e⁻ BUNCH

<u>Typical parameters</u> $\diamond \epsilon_N = (2-30)$ mm-mrad $\diamond Q = 100$ pC, N_{e-}~6x10⁹e⁻ $\diamond \Delta E/E = 5-8\%$ $\diamond E \sim 4-10^+$ GeV

Diagnostics: e⁻ BUNCH

16/24

\diamond butterfly method

\diamond Bunch length (σ_z =60µm)

♦OTR + streak camera (200fs)

♦electro-optical sampling (EOS)

- ♦ coherent emission (relative)
- ♦Focal size, alignment, position&pointing

♦Imaging, YAG screen

 \diamond synchrotron radiation (relative)

<u>Typical parameters</u> $\diamond \epsilon_{N}=(2-30)$ mm-mrad $\diamond Q=100$ pC, N_e- $\sim 6x10^{9}e^{-1}$ $\diamond \Delta E/E=5-8\%\%$ $\diamond E\sim 4-10^{+}$ GeV

RUN 2c: DESiGN

Muggli (AWAKE Coll.), J. of Phys.: Conf. Series1596, 012008 (2020) 17/24

RUN 2d: DESiGN

Muggli (AWAKE Coll.), J. of Phys.: Conf. Series1596, 012008 (2020) 18/24

*HPS: Helicon Plasma Source

*DPS: Discharge Plasma Source *HPS: Heli

© P. Muggli

*HPS: Helicon Plasma Source

OPTIONS FOR RUN 2d

© P. Muggli *DPS: Discharge Plasma Source

Alban Suble

10 m DPS in AWAKE tunnel

*HPS: Helicon Plasma Source

OPTIONS FOR RUN 2d

C P. Muggli

*HPS: Helicon Plasma Source

OPTIONS FOR RUN 2d

*DPS: Discharge Plasma Source

10 m DPS in AWAKE tunnel

C P. Muggli

*HPS: Helicon Plasma Source

P. Muggli, Collab meeting, 03/11/2024

1 m HPS in CERN la

© Alban Suble

10 m DPS in AWAKE tunnel

RUN 2c,d: EXPECTED PARAMETER REACH

21/24

RUN 2c,d: EXPECTED PARAMETER REACH

© P. Muggli Wing, Phil. Trans. Royal Soc., 377, 20180185 (2019)

RUN 2c,d: EXPECTED PARAMETER REACH

© P. Muggli Wing, Phil. Trans. Royal Soc., 377, 20180185 (2019)

RELEVANCE TO OTHER ADVANCED ACCELERATORS

Developments shared with other plasma-based accelerators:

- ♦Externally inject an e⁻ bunch
- ♦Acceleration to multi GeV level
- $\diamond \text{Control}$ e-bunch quality: E, $\Delta \text{E/E},$ Q, ϵ_{N}
- ♦Plasma source: length, density uniformity, reproducibility, tunability
- \diamond Development of diagnostics: plasma density, bunch parameters (ϵ_N)

- ⇔ injection, staging
- ⇔ large energy gain
- ⇔ quality!!
- ⇔ staging, >1 plasma
- ⇔ quality

RELEVANCE

Technological developments

♦Plasma sources

♦ reproducibility, tunability, uniformity, etc.

♦Injectors/injection

 \diamond RF-based, LWFA, ...

 \diamond parameters

 \diamond reproducibility, tunability, uniformity, etc

♦Diagnostics

Scientific merit

♦Edda's, Marlene's talk

- ♦ education, prizes

Understanding plasma-based accelerators

♦ and more …

SUMMARY

AWAKE

Solid plan based on results of successful Run 1,2a,b

Demonstrated baseline self-modulator for Run 2c,d

♦ Baseline for Run 2c: external injection experiment

♦Rb self-modulator plasma

♦Rb accelerator plasma

♦RF-based e-bunch injector (CERN)

Design/construction has started, design of injection zone starts in 2025, experiments in 2028

Most topics addressed for Run 2 c,d are relevant for other plasma-based accelerators

♦ Technological developments: plasma source, injector, …

 \diamond Scientific merit: publications, invited presentations, PhDs, Masters, prizes, ...

♦Run 2d: acceleration experiment in scalable plasma source

 \diamond Preparation has started, plasma source lab at CERN

 \diamond No showstoppers identified

 \diamond Can produce parameters for first particle physics applications in early 2030's

24/24

IONIZING LASER: LAYOUT

IR beams delivery to plasma cells, relays

- Stretched pulse
- Compressed pulse
- --- Mirror leak
- E. Granados

- · Relay imaging systems require only low-level primary vacuum, blue mirrors are "in air"
- · Focusing on plasma cell attained by mismatching beam expanders
- · Content of diagnostics sets still to be determined, location of safety devices, etc...