

The next AWAKE runs: technological advancements, scientific merit, and expected parameter reach

Patric Muggli

MAX-PLANCK-INSTITUT FÜR PHYSIK

1/24

RESULTS RUN 1,2a,b

Summary & Conclusions

A WA-KH

- AWAKE is on schedule and achieved all milestones
 - Run 1 Run 2a programs complete
 - + many additional physics/technology studies performed
 - First promising results on Run 2b

AWAKE scientific results

- Impact the wakefield community
- Lead to many publications in high impact journals
- Almost all of them have early-career researchers as first authors

Self-modulator demonstrated after Run 2b (2024)

Wakefield physics questions specific to the resonant excitation scheme

- Driver preparation → Self-modulation
- Wakefield control → Seeding
- ightarrow Witness acceleration ightarrow External injection $\ \checkmark$
- 🔹 Maintain wakefields 🗲 Density step 🍥
- Quality → can the quality of the accelerated bunch be controlled? → Run 2c
- Scalability → can the acceleration be scaled?

→ Run 2d

M. Turner

Plan for Run 2c,d based on successful Run 1,2a,b results (Edda, Marlene)

♦ Clear and solid plan towards a scalable acceleration system

develop all technical components required

♦Identify challenges:

♦ baseline plan for Run 2c

 \diamond explore options for Run 2d

♦Plan:

♦ includes numerous topics relevant to all plasma-based accelerators (HEP)

Includes technological developments

 \diamond aim at parameters for fixed target experiments with e⁻

 \diamond Goal: propose particle physics experiments in 2030's

C P. Muggli

© P. Muggli

**SM: Self-Modulation

© P. Muggli

4/24

© P. Muggli

RUN 2c: e⁻-EXTERNAL INJECTION EXPERIMENT

RUN 2c: e⁻-EXTERNAL INJECTION EXPERIMENT

FUNCTIONS FOR RUN 2c,d

RUN 2c BASELINE

P. Muggli, Collab meeting, 03/11/2024

PARAMETERS RUN 2c: RUBIDIUM PLASMA

PARAMETERS RUN 2c: SEEDING

A WAKE

 \diamond e-bunch seeding

- \diamond entire p⁺ bunch self-modulated
- \diamond induces hosing when misalignment T. Nechaeva et al., (AWAKE Collab.) accepted, Phys. Rev. Lett.

PARAMETERS RUN 2c: GAP BETWEEN PLASMAS

♦ Continuous transverse evolution of the p+ bunch in the (no plasma, vacuum) gap
♦ Must minimize gap length to maximize wakefields

♦Integration

10/24

BASE LINE, RUN 2c: INJECTOR(S)

In the lab!

P. Muggli, Collab meeting, 03/11/2024

BASE LINE, RUN 2c: INJECTOR(S), DESIGNED

In the lab!

P. Muggli, Collab meeting, 03/11/2024

BASE LINE, RUN 2c: INJECTOR(S), DESIGNED

P. Muggli, Collab meeting, 03/11/2024

BASE LINE, RUN 2c: INJECTOR(S), DESIGNED

RUN 2c: INJECTION REGION

13/24

PARAMETERS RUN 2c: INJECTION/ACCELERATION

P. Muggli, Collab meeting, 03/11/2024

PARAMETERS RUN 2c: INJECTION/ACCELERATION

P. Muggli, Collab meeting, 03/11/2024

RUN 2c: INJECTION ALIGNMENT/DIAGNOSTICS

DiAGNOSTICS: e⁻ BUNCH

<u>Typical parameters</u> $\diamond \epsilon_{N}=(2-30)$ mm-mrad $\diamond Q=100$ pC, N_{e-}~6x10⁹e⁻ $\diamond \Delta E/E=5-8\%$ $\diamond E\sim 4-10^{+}GeV$

DiAGNOSTICS: e⁻ BUNCH

16/24

♦ butterfly method

♦ micro-lens array (optical pepper-pot)

\Rightarrow Bunch length (σ_{z} =60µm)

 \diamond OTR + streak camera (200fs)

 \diamond electro-optical sampling (EOS)

- \diamond time-deflecting cavity (TDC)
- \diamond coherent emission (relative)
- ♦ Focal size, alignment, position&pointing

♦Imaging, YAG screen

 \diamond synchrotron radiation (relative)

Typical parameters $\diamond \epsilon_{N} = (2-30)$ mm-mrad $\Delta E/E=5-8\%\%$ ♦E~4-10+GeV

J. Farmer

RUN 2c: DESiGN

Muggli (AWAKE Coll.), J. of Phys.: Conf. Series1596, 012008 (2020) 17/24

RUN 2d: DESiGN

Muggli (AWAKE Coll.), J. of Phys.: Conf. Series1596, 012008 (2020) 18/24

*HPS: Helicon Plasma Source

© P. Muggli *DPS: Discharge Plasma Source

*HPS: Helicon Plasma Source

P. Muggli, Collab meeting, 03/11/2024

OPTIONS FOR RUN 2d

C P. Muggli

*DPS: Discharge Plasma Source

*HPS: Helicon Plasma Source

P. Muggli, Collab meeting, 03/11/2024

1 m HPS in CERN lat

© Alban Suble

10 m DPS in AWAKE tunnel

OPTIONS FOR RUN 2d

C P. Muggli

OPTIONS FOR RUN 2d

*DPS: Discharge Plasma Source

© P. Muggli

*HPS: Helicon Plasma Source

P. Muggli, Collab meeting, 03/11/2024

1 m HPS in CERN la

© Alban Suble

10 m DPS in AWAKE tunnel

RUN 2c,d: EXPECTED PARAMETER REACH

21/24

P. Muggli, Collab meeting, 03/11/2024

RUN 2c,d: EXPECTED PARAMETER REACH

© P. Muggli Wing, Phil. Trans. Royal Soc., 377, 20180185 (2019)

RUN 2c,d: EXPECTED PARAMETER REACH

© P. Muggli Wing, Phil. Trans. Royal Soc., 377, 20180185 (2019)

P. Muggli, Collab meeting, 03/11/2024

RELEVANCE TO OTHER ADVANCED ACCELERATORS

Developments shared with other plasma-based accelerators:

- ♦Externally inject an e⁻ bunch
- ♦Acceleration to multi GeV level
- $\diamond \text{Control}$ e-bunch quality: E, $\Delta \text{E/E},$ Q, ϵ_{N}
- ♦Plasma source: length, density uniformity, reproducibility, tunability
- \diamond Development of diagnostics: plasma density, bunch parameters (ϵ_N)

- ⇔ injection, staging
- ⇔ large energy gain
- ⇔ quality!!
- ⇔ staging, >1 plasma
- \Leftrightarrow quality

RELEVANCE

Technological developments

♦Plasma sources

♦ reproducibility, tunability, uniformity, etc.

♦Injectors/injection

 \diamond RF-based, LWFA, ...

 \diamond parameters

 \diamond reproducibility, tunability, uniformity, etc

♦Diagnostics

Scientific merit

♦Edda's, Marlene's talk

- ♦ education, prizes

Understanding plasma-based accelerators

SUMMARY

♦AWAKE: high-energy e⁻ for application to particle physics

Solid plan based on results of successful Run 1,2a,b

Demonstrated baseline self-modulator for Run 2c,d

♦ Baseline for Run 2c: external injection experiment

♦ Rb self-modulator plasma

♦Rb accelerator plasma

- ♦RF-based e-bunch injector (CERN)
- ♦ Design/construction has started, design of injection zone starts in 2025, experiments in 2028
- Most topics addressed for Run 2 c,d are relevant for other plasma-based accelerators
- ♦ Technological developments: plasma source, injector, …
- Scientific merit: publications, invited presentations, PhDs, Masters, prizes, …
- ♦Run 2d: acceleration experiment in scalable plasma source
 - \diamond Preparation has started, plasma source lab at CERN
- $\diamond No$ showstoppers identified

Can produce parameters for first particle physics applications in early 2030's © P. Muggli

24/24

P. Muggli, Collab meeting, 03/11/2024

IONIZING LASER: LAYOUT

IR beams delivery to plasma cells, relays

- Stretched pulse
- Compressed pulse
- --- Mirror leak
- E. Granados

- · Relay imaging systems require only low-level primary vacuum, blue mirrors are "in air"
- · Focusing on plasma cell attained by mismatching beam expanders
- · Content of diagnostics sets still to be determined, location of safety devices, etc...