A hosing mitigation experiment

M. Moreira¹, P. Muggli^{1,2} and J. Vieira³

¹ CERN, Geneva, Switzerland

² Max Planck Institute for Physics, Munich, Germany

- ³ GoLP / Instituto de Plasmas e Fusão Nuclear,
- Instituto Superior Técnico, Lisbon, Portugal

A hosing mitigation mechanism has been proposed

Key characteristics

- sequence of up and down density steps
- delay rather than suppress
- "backlash" after some betatron periods

$$k_{\beta}^{-1} = c/\omega_{\beta} = c\sqrt{2\gamma \frac{\varepsilon_0 M_b}{q_b^2 n_{b0}}}$$

OSIRIS 3D simulations with a transversely flat-top bunch in a window spanning ~22 λ_p

M. Moreira, P. Muggli, and J. Vieira, Phys. Rev. Lett. 130, 115001 (2023)

A hosing mitigation mechanism has been proposed

Key characteristics

- sequence of up and down density steps
- delay rather than suppress
- "backlash" after some betatron periods
- effect can be prolonged with an extra pair of steps

Transverse centroid energy along propagation

$$k_{\beta}^{-1} = c/\omega_{\beta} = c\sqrt{2\gamma \frac{\varepsilon_0 M_b}{q_b^2 n_{b0}}}$$

OSIRIS 3D simulations with a transversely flat-top bunch in a window spanning ${\sim}22\,\lambda_p$

M. Moreira, P. Muggli, and J. Vieira, Phys. Rev. Lett. 130, 115001 (2023)

There is a visible effect on the bunch centroid

M. Moreira AWAKE Collaboration Meeting – 11-13 March 2024

Does the mitigation set-up destroy a self-modulated bunch?

- 2D cylindrical OSIRIS simulations
- submit fully self-modulated bunch to the two-step density profile

			1

Virtually no effect on bunch charge

Accelerating field is lowered

 preliminary study indicates a large drop in the wakefield amplitude (~ -40%)

M. Moreira AWAKE Collaboration Meeting – 11-13 March 2024

What lies behind the proposed mitigation mechanism?

Accessing different growth regimes

• by tuning the plasma density early in the instability's development

Assumptions and approximations

- electron bunch (assume everything scales with the betatron period)
- cold / zero emittance
- hosing is seeded along one plane
- probably lower SMI seed than in reality

• "early" =
$$z \lesssim k_{\beta}^{-1}$$

M. Moreira, P. Muggli, and J. Vieira, Phys. Rev. Lett. 130, 115001 (2023)

A potential experimental setup using electron seeding \rightarrow observe hosing 1) consistently* \rightarrow observe: less hosing 2) self-modulation no difference → SPS proton bunch: $k_{\beta}^{-1} \approx [1.8, 3.1]$ m * T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 132, 075001 (2024)

AIVAKE

Conclusion

- it may be possible to use the current AWAKE setup to try to demonstrate a theoretically predicted hosing mitigation scheme
- although no fundamental show-stoppers yet,
 3D simulations with nominal parameters still have to be conducted

Betatron skin depth	3.1 m	1.8 m		
RMS bunch length	220 ps / 6.6 cm			
RMS bunch radius	200 µm			
Proton energy	400 GeV			
Bunch charge	15 nC	46.5 nC		
Bunch population	0.9×10 ¹¹ 2.9×10 ¹			

Thank you!

Questions?

