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Filamentation of Beams
2 relevant filamentation modes in a relativistic, quasineutral bunch (based on Shukla, 2018)

Current filamentation
● EM-fields of similar magnitude

Oblique instability
● Dominant electric field

Quasineutral bunch
● Neutral: Equal number of positrons (e+) and electrons (e-) --> No net charge
● Quasi: Divergence results in small fluctuations: Seed for instability growth

Why quasineutral?
● Enables study of small-scale / higher order instabilities, while avoiding SMI, driven by 

the bunch shape
● Avoids pinching and hosing for high bunch currents
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Filamentation of Warm Beams
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quasineutral e+e- bunch 
with finite emittance 

Bunch sliceTransverse 
slice

5



Max Planck Institute for Plasma Physics | Erwin Walter | 12.03.2024

Filamentation of Warm Beams

Positron
charge
density

Plasma 
charge 
density

Electron
charge 
density

● Dilute (nb=0.02 np), 
quasineutral e+e- bunch 
with finite emittance 

● Longitudinal and 
transvere modulation in 
bunch and plasma

● Finite, roughly uniform 
distance between self-
modulated filaments

Bunch sliceTransverse 
slice

5



Max Planck Institute for Plasma Physics | Erwin Walter | 12.03.2024

Filamentation of Warm Beams
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with finite emittance 
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● Finite, roughly uniform 
distance between self-
modulated filaments

Is filamentation driven 
by the electrostatic 
plasma respose?
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Wakefield-driven Two-Stream: Seed Fields
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SMI: Driven by beam shape
● Gaussian bunch drives focussing and 

defocussing wakefield
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Wakefield-driven Two-Stream: Seed Fields

Higher-order: Driven by transverse perturbation
● Wakefield alternating focusses and defocusses 

filaments

Bunch
charge
density

Perp.
wakefield

SMI: Driven by beam shape
● Gaussian bunch drives focussing and 

defocussing wakefield
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Wakefield-driven Two-Stream: A Brief Theory

Governing Equations for Wakefields
● Plasma return current neglected

Initial bunch perturbation
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Wakefield-driven Two-Stream: A Brief Theory

Governing Equations for Wakefields
● Plasma return current neglected

Seed Fields

Initial bunch perturbation
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Wakefield-driven Two-Stream: Relativistic Factor

Fluid theory
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Wakefield-driven Two-Stream: Relativistic Factor

Fluid theory

Diffusion TTS: Dominant in 
the relativistic limit 
(γb»1) and kz→kp

TSI: Dominant in 
the non-relativistic 

regime
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Wakefield-driven Two-Stream: Relativistic Factor

Fluid theory

Diffusion TTS: Dominant in 
the relativistic limit 
(γb»1) and kz→kp

TSI: Dominant in 
the non-relativistic 

regime

Oblique instability: Superposition of TSI and TTS
● TTS is not a superposition of SMI and CFI
● SMI is the 0th mode of TTS

8



Max Planck Institute for Plasma Physics | Erwin Walter | 12.03.2024

Wakefield-driven Two-Stream: Relativistic Factor

Relative Effect 
of Wakefield 
components

Two-
stream 
growth

Fluid theory
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Wakefield-driven Two-Stream: Growth

Bunch
charge
density

Perp. 
Wakefield

● Bunch filaments self-modulate due 
to transverse wakefield

● Saturation due to dephasing
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Wakefield-driven Two-Stream: Growth
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Wakefield-driven Two-Stream: Growth
● Simulations and theory in excellent agreement:

Bunch dominantly driven by electric field
● Two-stream growth proportionally scales with transverse bunch profile

Propagation time [1/ωβ]

Electric 
fields’ 

envelope
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Filamentation of Warm Beams

Positron
charge
density

Plasma 
charge 
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charge 
density

● Dilute (nb=0.02 np), 
quasineutral e+e- bunch 
with finite emittance 

● Longitudinal and 
transvere modulation in 
bunch and plasma

● Finite, roughly uniform 
distance between self-
modulated filaments

What is the effect of 
emittance?
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Emittance-Driven Diffusion

Cold bunch: Seeded 
wavenumber dominates

13



Max Planck Institute for Plasma Physics | Erwin Walter | 12.03.2024

Emittance-Driven Diffusion

Cold bunch: Seeded 
wavenumber dominates

Finite emittance: Small 
scale phasemixing damps 
high modes and lower 
modes, seeded by noise, 
dominate
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Emittance-Driven Diffusion

Seed fields result in a purely 
temporal damping, whose effect is 
stronger towards the bunch front

Conflict: Damping may be 
spatiotemporal?

Propagation time [1/ωβ]

Momentum width [mec]
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Emittance-Driven Diffusion

Fallback: Self-modulated filaments 
at different phases.

15



Max Planck Institute for Plasma Physics | Erwin Walter | 12.03.2024

Emittance-Driven Diffusion

● Theory enables to accuratelly 
describe the growth of the 
electric field

● Electric field (plasma response) 
dominates by order of magnitude 
as it grows along propagation 
and along the bunch

● Magnetic field neglible, since it 
only originates from the local 
bunch slice

Fallback: Self-modulated filaments 
at different phases.
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Emittance-Driven Diffusion

● Electric field spectrum spans a ring in (kx, ky) space

● Spectral distribution agrees well between theory and 
unseeded simulation, including the spectral seed 
distribution
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Summary

Simulations and linear theory confirm in excellent agreement that higher-order 
transverse two-stream result in self-modulated filaments for low-density bunches.

Transverse two-stream is the relativistic limit of the oblique instability („oblique two-
stream“).

Emittance-related diffusion damps high modes and results in a finite distance between 
filaments. Transverse wavevectors are coupled in 3D, which spans a ring of dominant 
transverse modes.
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Thank you for your attention
For questions please contact me: erwin.walter@ipp.mpg.de
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Emittance-Driven Diffusion

Seed fields result in a purely temporal damping, whose effect 
is stronger towards the bunch front

Conflict: Damping may be spatiotemporal?
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Emittance-Driven Diffusion
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