

Developing Expectations with Plasma Simulations

February 2024 John Farmer, MPP

State-of-the-art Simulations

Laser-driven wakefield acceleration (EARLI)

- wakefield structure ~1 plasma wavelength
- propagate ~1000 plasma wavelengths

State-of-the-art Simulations

Laser-driven wakefield acceleration (EARLI)

- wakefield structure ~1 plasma wavelength
- propagate ~1000 plasma wavelengths

- wakefield structure 100s of plasma wavelengths
- propagate ~10,000 plasma wavelengths
- ~5Mch with conventional codes

Moschuering et al. (2019)

A IV-A-K-H

State-of-the-art Simulations

IST Lisbon

Full EM-PIC in 2D and 3D

HHU Düsseldorf

Full EM-PIC in 3D Quasistatic PIC in 3D

Broad collaboration of institutes and simulation tools

Prediction

Self modulation for acceleration Caldwell and Lotov, PoP (2011)

Controlling SMI with density gradients Pukhov *et al.*, PRL (2011)

Demonstrated in 2018

Agreement

Microbunch structure at streak camera

A.-M. Bachmann, PhD thesis (2021)

John Farmer, MPP

AWAKE review, 2024

Impact of ion motion on SMI imaged at streak camera

Wakefields initially grow, before decaying.

AWAKE Collaboration, Symmetry (2022)

Plasma density step allows self-modulation to be controlled

AWAKE Collaboration, Symmetry (2022)

AWAKE

Density step allows high wakefield amplitude over hundreds of metres.

Energy gain of ~150 GeV in 200 m (after beamloading)

John Farmer, MPP

Controlling Self-modulation

Wakefields after 20 metres show broad tolerances for step position and height.

a gap between SMI and acceleration stages.

Modulated proton beam evolves in this gap.

Gap reduces wakefields, but amplitude remains stable.

Accelerating gradient depends on gap length.

Assume 1 m gap (480 MV/m) as "worst case" scenario.

SMI growth allows wakefields with luminal phase.

Lotov and Tuev, 2021

AWAKE

Assume wakefield phase velocity equals proton velocity as "worst case" scenario

Blue – wakefield phase Red – driver velocity

These assumptions allow physics studies using "toy models".

Short driver generates a quasilinear wake (E_z =480 MV/m, γ_{ϕ} =426).

Allows rapid investigation of parameter space.

need a blowout to conserve emittance.

Low-emittance witness drives its own!

Conventional wisdom:

Witness slice emittance after 10m acceleration

0u/u

Conventional wisdom: need a blowout to conserve emittance.

Low-emittance witness drives its own!

Witness slice emittance after 10m acceleration

Projected emittance after 10m acceleration has only weak dependence on initial radius (5-15µm) • broad tolerances

plasma cell-1

p⁺-beam

Technical constraints mean that it may be necessary to inject through the laser beam dump.

laser-beam dump

vacuum window

This will lower the charge density of the beam in the plasma, preventing the formation of a complete blowout.

·

laser beam

plasma cell-2

Injection Studies *e-beam* Witness

injection-point

J. Farmer *et al.*, *in preparation*

Emittance control *is* still possible with higher-emittance beams

- "quasi-matching" to nonlinear wakefield
- same broad tolerances

Similar schemes exist for positron beams c.f. C. S. Hue *et al.* (2021)

Projected normalized emittance after 10m acceleration for different initial radii

AWAKA

Further optimisation possible through tuning electron line or varying witness charge

Projected normalized emittance after 10m acceleration for different initial radii

Rapid initial evolution before reaching equilibrium.

• allows scaling to large distances/high energy.

Over 10m:

- negligible emittance growth
- 4 GeV energy gain
- 5-8% energy spread

AWAKE

AIVAKE

Clear paths to improve these values:

- smaller gap
- control wakefield phase

Alternative Injection Schemes

Laser-foil injector

solid target accelerated electrons laser pulse $d^2 N/(dEd\alpha)$ 10^{7} 10^{5} (a)E MeV -30°

Khudiakov and Pukhov, PRE (2021)

Wilson *et al. submitted.*

Laser-plasma injector

Minenna *et al.* (EARLI Collaboration), *submitted.* AWAKE

Associated Physics

Ion motion

Control of hosing

Filamentation

AWAKE

Impact Beyond AWAKE

Development and validation of simulation tools

Excellent test bed for global push towards High Performance Computing at the exascale

Tolerances for external injection in quasilinear wakes

• also relevant for positron acceleration

Outlook

Comprehensive simulation programme ahead of Run 2c:

- integrated simulations, simultaneously resolving witness bunch emittance and full proton beam
- further optimisation to maximise gradients after the gap
- further optimisation of witness parameters at injection

Conclusions

AWAKE simulations have proven ability to predict and reproduce experimental results.

Physics studies carried out with simulations show

- control of wakefield gradients over long distances
- control of witness emittance during acceleration
- broad tolerances in both cases

Provides confidence that the Run 2c/d goals are achievable

Thank you

Bonus content

Density step allows high wakefield amplitude over hundreds of metres.

Energy gain of ~150 GeV in 200 m (after beamloading)

 For first 40 m acceleration, broad tolerances for witness delay

Lotov and Tuev, Plasma Phys. Control. Fusion (2021)

AWAKE

Emittance after 10 m acceleration for 16 μ m initial emittance.

Blowout-matched radius

Optimal radius (self-matching)

31

AWAKE review, 2024

100

(mm)

100 pC charge, 8 μm initial emittance

Injection Studies

1

Simulations for different transverse offsets show smeared-out bunch at focus.

x (µm)

Beyond Run 2

John Farmer, MPP

AIVAKE

