

New electron Source, prototype, first results

AWAKE electron injectors

ARTI prototype status

Conclusion and outlook

Awake Collaboration Meeting, March 11-13, Liverpool Steffen Doebert

Parameters for both injectors

- Flexibility in the beam parameters which can be delivered keeping good energy spread and emittance Energy: +- 10%, Charge: up to 400 pC, Bunch length: 0.2-1 ps, beam size : see transport
- Constraint space for hardware
- Excellent timing stability and synchronisation with laser and self-modulation device

	18 MeV injector	150 MeV injector
Beam Energy (MeV)	18.5	150
Energy Spread ($\Delta E/E_0$) (%)	0.50%	0.20%
Energy stability ($\Delta E_0/E_0$)	1 x 10-2	1 x 10-3
RMS Bunch Length (ps)	≈2-3	≈0.2-0.3
Bunch Charge (pC)	100 -600 pC	100 pC
Emittance (mm mrad)	2 - 5	2
Beam size (µm)	~ 190	5.75

150 MeV injector – beam dynamics design

- Very compact electron injector
- Simulated parameters within specifications

Laser parameters

$\lambda[nm]$	w[ev]	r[mm]	<i>t</i> [<i>ps</i>]	<i>q</i> [n <i>c</i>]
262	4.31	1.0	1.0 - 5.0	0.1-1.0

RF parameters

Parameter	RF Gun	Buncher	Acc. I	Acc. II
Frequency	3.0	12.0	12.0	12.0
Gradient	120 <i>MV/m</i>	<u>35<i>MV/m</i></u>	80 <i>MV/m</i>	80 <i>MV/m</i>
N. Cell	1.5	30	120	120

E _k [MeV]	$\sigma_r[mm]$	$\sigma_t[fs]$	$\varepsilon_x[\mu m]$	σ_E [%]	$I_{av}[A]$
150	0.14	207	0.44	<u>0.09</u>	168

150 MeV injector – RF layout

- Total Energy 100- 160 MeV, 10 Hz rep. rate, single bunch
- Will use CLIC developed x-band components as much as possible
- Multiple RF-power configurations studied

Studied alternative scenarios

Beam dynamics:

> 3 identical structures, one 50 MW klystron → Save small klystron, waveguide run and buncher structure

RF power variants:

➢ One 25 MW klystron for acceleration, small 8 MW klystron for bunching → less expensive klystron and modulator
 ➢ Only one 25 MW klystron for everything → less expensive klystron, save second waveguide run and small klystron

Integration scenarios:

- \succ Keep Run 1 modulator (PPT) for LINAC 1, instead of two K100 modulators \rightarrow no new hardware needed
- \succ Use K400 modulator instead of PPT \rightarrow better performance and stability
- ➢ Replace K400 x-band with 2x K200 x-band → essentially staged scenario to upgrade energy later

AWAKE RUN 2 alternatives

3 identical structures, first one for bunching: 100 MeV with modest gradient,

&SOLENOID LBField=T

1

&Cavity LEfield=T

File_Efield(1) = 'eacc.txt', Nue(1)=2.9985, MaxE(1)=120, C_Pos(1)=0.00000, Phi(1)=30.0,

File_Efield(4) = 'im_105cell_david.txt', Nue(4)=
11.9942, MaxE(4)=100, C_Pos(4)=3.0,
Phi(4)=120,
File_Efield(5) = 're_105cell_david.txt', Nue(5)=
11.9942, MaxE(5)=100, C_Pos(5)=3.0,
Phi(5)=30,

File_Efield(6) = 'im_105cell_david.txt', Nue(6)=
11.9942, MaxE(6)=100, C_Pos(6)=4.1,
 Phi(6)=110,
File_Efield(7) = 're_105cell_david.txt', Nue(7)=
11.9942, MaxE(7)=100, C_Pos(7)=4.1,
 Phi(7)=20,

AWAKE RUN 2 alternatives

3 identical structures, first one for bunching: 100 MeV with modest gradient, energy spread 150 keV, bunch length 83 um, emittance 0.75 um

AWAKE RUN 2 alternatives performance summary

- □ 50 MW klystron: 3*54 MV/m =7.5 MW out of klystron per structure; 35% waveguide losses; bunching separate → > 150 MeV baseline scenario
- □ 50 MW klystron: 1 * bunching (2MW) +2*54 MV/m; \rightarrow ~ 100 MeV
- □ 25 MW klystron: 3* 43 MV/m; \rightarrow ~ 116 MeV with separate bunching
- □ 25 MW klystron: 1 * bunching (2MW) + 2* 47 MV/m; → ~ 93 MeV with separate bunching
- □ The possibility to run at higher charge gets compromised with those scenarios, simulations indicate 200 pC might still be OK but 400 pC has already higher emittance

Keep PPT modulator from Run1 for Linac 1

Using three 25 MW x-band klystrons

150 MeV injector – Prototype

• ARTI (AWAKE Run2 Test Injector)

- Reduced scale prototype, 60 MeV, INFN gun, CLIC-structure as buncher and PSI-linearizing structure for acceleration.
- Goal: demonstrate the velocity bunching and emittance preservation with x-band Prototyping of key accelerator hardware and diagnostics
- Gaining experience before installation in the AWAKE tunnel

ARTI status

- RF-gun and diagnostics operational
- Magnets for second phase installed
- Vacuum system will be next
- Missing the x-band waveguide system and the klystron (still at CPI for repair)
- First 'user' experiment planned in spring: Vlad's CBS experiment

Spectrometer

First results with beam

RF set-up: Input Power: 13 MW Gradient: 114 MV/m

Beam charge:

Faraday Cup: up to 400 pC with short laser pulse Copper Qe: 9 x 10⁻⁴

Very promising for Copper cathodes

No dark current basically not measurable for time being: < 5 pC (preliminary)

Beam profile characterisation

Typical beam profile

Screenshot of focused beam

Phase scans

• The on-crest phase was shifted by 20 deg. On-crest now at 163 deg.

Solenoid scans

Laser pulse length = 327 fs RMS

X-band structure developments

Travelling wave Constant Impedance

Shunt Impedance [M Ω /m]	100
Group Velocity vg/c [%]	2.4
Q-Factor	7061
Attenuation [1/m]	0.7
Length [m]	0.9

Designed by INFN Frascati, D. Alesini, M. Diomede, for CompactLight and EuPraxia

Mechanical design made at CERN

CLIC style tolerances Vacuum brazing design

Structure to be inserted in a solenoid of 150 mm diameter bore radius

First short prototype under construction

Conclusion and outlook

- □ Further optimisation of the existing baseline injector for Run 2c with respect to performance, cost and integration
- Very good start of the beam commissioning. No major problems spotted so far Of course, fine tuning is needed and systematic measurements. Clearly much more work to do !
- □ Will alternate commissioning periods with installations periods to complete the injector
- Interesting times ahead, a first visible piece of hardware for Run 2c and a first 'user' experiment on CBS at low energy.
- Thanks to Jordan Arnesano for his contributions to AWAKE Welcome to Anton Eager to take over in December

Additional material

μ–TCA development for LLRF with Uppsala

- System shipped to CERN from Uppsala, installed in the form CLIC test facility.
- RF signal acquisition, generation and feedback/forward loops tested.
- Use of DESY BSP and python GUI.
- External trigger injection through RJ45 connector on SIS8300KU AMC, distributed to mLVDS lines.
 - Currently under test/development (still some bugs to iron out)
- Work progressing well on a DESYRDL to CERN/Cheby convertor script.

Centering the gun solenoid

Solenoid X offset

To further reduce the emittance from the gun, the position of the electron beam can be tracked through a solenoid scan

 \rightarrow solenoid position and angle offset can be inferred by fitting the beam trajectory to simulations. Preliminary results predict a transverse misalignment less than 1 mm.

Vlad Musat | CLIC Mini Week 2023

Solenoid Y offset

Stable beam point found

Compton backscattering

= The scattering of a low energy photon from an EM field to a high-energy photon (X-ray or gamma ray) during the interaction with a charged particle.

$$N_{\gamma} = \sigma_{c} \frac{N_{e} N_{laser} \cos(\phi/2)}{2\pi \sigma_{\gamma,y} \sqrt{\sigma_{\gamma,x}^{2} \cos^{2}(\phi/2) + \sigma_{\gamma,z}^{2} \sin^{2}(\phi/2)}} \qquad \qquad \mathcal{B} = \frac{\mathcal{F}}{4\pi^{2} \sigma_{\gamma,x} \sqrt{\epsilon_{x}/\beta_{x}} \sigma_{\gamma,y} \sqrt{\epsilon_{y}/\beta_{y}}}$$

$$\mathbf{Total flux} \qquad \qquad \mathbf{Average brilliance}$$

$$\frac{\sigma_{E_{\gamma}}}{E_{\gamma}} = \sqrt{\left(\frac{\sigma_{E_{\theta}}}{E_{\theta}}\right)^{2} + \left(2\frac{\sigma_{E_{e}}}{E_{e}}\right)^{2} + \left(\frac{\sigma_{E_{laser}}}{E_{laser}}\right)^{2} + \left(\frac{\sigma_{E_{\epsilon}}}{E_{\epsilon}}\right)^{2}} \qquad \qquad E_{X-ray} = 2\gamma^{2} E_{laser} \frac{1 + \cos \phi}{1 + \gamma^{2} \theta^{2}}$$

$$\mathbf{Photon bandwidth} \qquad \qquad \mathbf{Photon energy}$$

Experimental set-up

X-band accelerating structure Mechanical design

RF-Design made by D. Alesini, M. Diomede, INFN Frascati

Other requirements

A certain flexibility in the beam parameters which can be delivered keeping good energy spread and emittance Energy: +- 10%, Charge +400% ?, Bunch length: 100%, beam size : see transport

Constraint space for hardware

Excellent timing stability and synchronisation with laser and self modulation device
 30 fs stability

Flexibility to produce higher charge

(for lower plasma density or experimental reasons)

Changing only laser pulse length and adapting magnetic field slightly

Mohsen Dayyani Kelisani

Flexibility to produce higher charge 0.1 to 1 nC per bunch

0.6

0.58

0.56

0.54

0.52

0.46

0.44

0.42

0.4 100

100 0.6

0.5

0.4

0.2

0.1

0.

100

 $\mathcal{Q}_{E}^{\mathbb{S}^{0.3}}$

 $\begin{bmatrix} L \end{bmatrix}_{Z_{0.48}}^{Z_{0.5}}$

AWAKE

Mohsen Dayyani Kelisani

Tentative RUN 2 injector parameter for 150 MeV

Only scaled down accelerating gradient, identical initial distributions, no new optimization

Energy:151.8 MeVEnergy Spread:144.5 keV rms =9.5 10-4Emittance: x/y:0.7 mm mradBunch length:60 um rmsBunch Charge:100 pC

Tentative RUN 2 injector parameter for 150 MeV

44 M

Tentative RUN 2 injector parameter for 150 MeV

PIC Dark Current Simulations

AWAKE

No Solenoid

Solenoid: Antisymmetric mode

Pablo Martinez-Reviriego, IFIC

Dark Current Simulations

0.25

0.20

Charge (pC/keV) 0.10

0.05

0.00

AWAKE Run 2

 \rightarrow Need to work in blow-out regime and do beam-loading

→ Demonstrate possibility to use AWAKE scheme for high energy physics applications in mid-term future!

→ Start 2021! Staged program for ~ 10 years

Accelerate an electron beam to high energy (gradient of 0.5-1GV/m)

Preserve electron beam quality as well as possible (emittance preservation at 10 mm mrad level)

Demonstrate scalable plasma source technology (e.g. helicon prototype)

Reference design

Mohsen Dayyani Kelisani