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Higgs-like boson

What is mass? ...
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Massless particles?
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Recently a number of %eople have discussed ever, gave a proof that the fallure of the Goldstone
the Goldstone theorem 1,2): that any solution of a theorem in the nonrelativistic case is of a type
Lorentz-invariant theory which violates an inter- which cannot exist when Lorentz invariance is im-
nal symmetry operation of that theory must con- posed on a theory. The purpose of this note is to

tain a massless scalar particle. Klein and Lee 3) show that Gilbert's argument fails for an impor-
showed that this theorem does not necessarily ap- tant class of field theories, that in which the con-

ply in non-relativistic theories and implied that served currents are coupled to gauge ﬂelds.4

their considerations would apply equally well to Following the procedure used by Gilbert ), let
Lorentz-invariant field theories. Gilbert 4 , how- us consider a theory of two hermitian scalar fields
132

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*
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It is of interest to inquire whether gauge

those vector mesons which are coupled to cur-
vector mesons acquire mass through interac-

rents that “rotate” the original vacuum are the
tion'; by a gauge vector meson we mean a ones which acquire mass [see Eq. (6)].

Yang-Mills field? associated with the extension We shall then examine a particular model Y 4 8 ye ars
of a Lie group from global to local symmetry. based on chirality invariance which may have a
The importance of this problem resides in the more fundamental significance. Here we begin
possibility that strong-interaction physics orig- with a chirality-invariant Lagrangian and intro-
inates from massive gauge fields related to a duce both vector and pseudovector gauge fields,
system of conserved currents.® In this note, thereby guaranteeing invariance under both local
we shall show that in certain cases vector phase and local y,-phase transformations. In 201 2 ex P
mesons do indeed acquire mass when the vac- this model the gauge fields themselves may break
uum is degenerate with respect to a compact the y, invariance leading to a mass for the orig-
Lie group. inal Fermi field. We shall show in this case
Theories with degenerate vacuum (broken that the pseudovector field acquires mass.
symmetry) have been the subject of intensive In the last paragraph we sketch a simple

study since their inception by Nambu.*"¢ A
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argument which renders these results reason-



By 1970s, physicists realised that two of the four fundamental forces—the weak force
and the electromagnetic force—are very closely related. The two forces can be
described within the same theory, which forms the basis of the Standard Model. This
“unification” implies that electricity, magnetism, light, and some types of radioactivity
are all manifestations of a single underlying force known as the glectroweak force,
The basic equations of the unified theory correctly describe the electroweak force and
its associated force-carrying particles, namely the photon, and the W_and Z bosons,
except for a major glitch. All of these particles emerge without a mass. While this is
true for the photon, we know that the W and Z have mass, nearly 100 times that of a
proton. Fortunately, theorists Robert Brout, Francois Englert and Peter Higgs made a
proposal that was to solve this problem. What we now call the Brout-Englert-Higgs
mechanism gives a mass to the W and Z when they interact with an invisible field, now
called the “Higgs field”.

Just after the Big Bang, the Higgs field was zero, but as the universe cooled and the
temperature fell below a critical value, the field grew spontaneously so that any
particle interacting with it acquired a mass. The more a particle interacts with this
field, the heavier it is. Particles like the photon that do not interact with it are left with
no mass at all. Like all fundamental fields, the Higgs field has an associated particle —
the Higgs boson. The Higgs boson is the visible manifestation of the Higgs field.
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Four fundamental forces
Electromagnetic force
Weak force
Electroweak force/field
Standard Model

Proton

Gauge theory

W and Z bosons

Higgs field

How many languages do you speak?

https://home.cern/science/physics/origins-brout-englert-higgs-mechanism



.. But how did we get here?

%* What are.the Fundam'enfal constituents of
the-universe? _

% What are we made. oF?

% How do they interact wn‘h each other?



How to Judge What Physicists are Doing ?

Constituents

e Number: economical
* Properties: few and simple
e Point-like? (no structure)

Theory

* Mathematically consistent
 Explains all observations
* Able to make predictions



Ancient Greece

All is
mathematical
form

I can figure
out the universe
by pure thought
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The “Classical” Period
~1687 — ~1897
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Chemists Discover Evidence for Atoms

John Dalton
e Gay-Lussac’s Law
e Boyle's Law
* Charles’s Law
e Law of Multiple Proportions
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Robert Brown

-botanist (physicists experimentalist)
~discovered the “brownian” motion
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Periodic Table
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Fundamental Particle Physics

.. by the end of 19th century, there were

32 8.sssest

92 Atoms, U
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The “Romantic” Period

~1897 — 71932
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World’' s premier physics
laboratory late 19th century

Bunsen Cell

A Typcal Lab



J. J. Thomson
A new particle,
"corpuscule”

electrically charged !

Thomson s CRT
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electrons distributed
like raisins in a
positively charged “pudding”

sphere of positive charge
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The term "electron” coined in 1891 by George
Johnstone Stoney to denote the unit of charge found
in experiments that passed electrical current through
chemicals; Irish physicist George Francis Fitzgerald

who suggested in 1897 that the term be applied to
Thomson’s “corpuscles”.
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The photoelectric effect

1887 Heinreich Hertz
1895-Wilhelm Roentgen
1899-J.J. Thompson
1901-Nikola Tesla
1902-Philipp von Lenard ek ety s
1905-Albert Einstein

low intensity source

current

E=hr=W+ —]T],QV Vthreshonn ¥V T
Photons can knock electrons out of atoms

— electrons are part of atoms

21



Lord Ernst Rutherford

Use high energy (5 MeV) alpha
particles from radium decay to
study structure of the atom.

2 |
Ernest Rutherford

very light electrons should
have no effect on the alpha’s
positive particle.

scattering of the alpha’s will
indicate structure of the “pudding”



Rutherford Scattering... surprise!

some of the alpha’s
107} scattered at large angles

Geiger and Marsden's
data points

Theoretical scattering
of one point charge

Scattered alpha particles
)

l()-‘ - / off another
| | Rutherford Data is described by
10°[ Liormula assuming that alpha
0 52 ar ar s e e e Particle is scattered of a
Scattering angle massive positive point
charge.
do 1722202 hAc? 1

dcosf ZE,% (1 — cos 8)? 2




Discovery of proton

~1911, Lord Rutherford also discovers the
nucleus of hydrogen (the proton, p+, “first” in
Greek) by bombarding alpha particles (3He) with
Nitrogen gas

To Vacuum Pump Nitrogen ‘ :
* * Fluorescent

Screen

Microscope ® Proton

|
\: Nitrogen

Silver fail 6 — —

Radioactive Alpha Protons Alpha particle
Source Particles

Oxyge 24



More questions than answers ...

A e~ S— 4

Wy

TR ol 3.
S e i
“ L\ ¥
» e |

_Scientists were puzzled by the missing mass as
protons’ mass did not add up to atom'’s;

-Rutherford predicts
theoretically the presence of a
neutral particle;

-Bothe-Becker, Joliot-Curie
discovered highly penetrating rays
(even thru lead) from Be

radiation; Rutherford’ s model
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Wilson’ s Cloud Chamber

. . . 3 L ’ 1 ; '?f."-‘ :3 3
Felt soaked with IPA X _ Hot water bottle hert Plastic aquarium '. ‘: ¢ !'\ 5 ‘,, 4
2 : | A
30°C
Evaporated
apour falls
from felt Anodised

- %ﬁi@wnh dry ice
- ="

When a charged particle passes through a
supersaturated gas, a series of droplets marking
the path of the particle condenses out of the
vapor, as the particle ionizes atoms along the
track. These tracks are momentarily visible,

marking the path of the particle through the
detector, taking photographs of any visible tracks. =




Discovery of the neutron

Radiation
- BT
oi -
I T
N I
P

Berylium \ Paraffin Wax Protons

James Chadwick \
Radiation of beryllium,

immune to E and B fields
+ - (beam of neutrons)

The basis for the word neutron is both "neutral” and the suffix "-on,"
which comes from the Greek word “ion” meaning "to go." The word ion
first appeared in English in 1834, and neutron appeared in 1921. “



spectral irradiance (kW/m I m)
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Stefan-Boltzmann, Wien and Max Planck

- black body radiation-relation between

an objects temperature and wavelength
of radiation it emits =

blackbody radiation

93.4
L 90
e 3000-K: —— E
800 1000 1200 1400 1600 B
- 80
wavelength (nm) L
L 75
736
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Planck’s Quantum Hypothesis

* Attempts to explain
blackbodyradiation using
classical physics failed
miserably

e At low temps. Prediction &
exp match well

» At high temps. Classical
prediction explodes to
infinity

* Very different from
experimental result

o Referred to as the
Ultraviolet Catastrophe

~190

_Classical prediction

Experimental observation
and Planck’s prediction

Relative intensity

Frequency

A FIGURE 30-3 The ultraviolet
catastrophe

Classical physics predicts a blackbody ra-
diation curve that rises without limit as
the frequency increases. This outcome is
referred to as the ultraviolet catastrophe.
By assuming energy quantization, Planck
was able to derive a curve in agreement
with experimental results.



& Continuous, absorption and emission

spectra (Fraunhofer, Kirchhoff ...) -
spectroscopy.

continuous spectrum absorption line spectrum
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emission line spectrum
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Matter waves

In 1924, de Broglie suggested that the matter particles will have

associated waves known as de Broglie waves or matter waves

de Broglie Wavelength
t B h
s=—(0r) p=—

% /.

de Broglie Wavelength in terms of KE

Consider a particle of mass m moving with a velocity v

Kinetic Energy of the particle

-~

l - l 5 )
E=—mv =—mv = i
2 2m 2m

zm ':D pP=2mE =) p=V2nE |ouis de Broglie

de Broglie wavelength de Broglie wavelength in terms of KE
& h . h
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Joshi Physics Classes
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‘Neutrons

Electrons—

Hotdns

" dNearly all of the mass of the
atom is concentrated in a very
small positively charged
nucleus.

How small is The nucleus?
What holds it together?

32




The Neutrino

A free neutron decays to a proton
and electron in about 15 minutes.
From conservation of momentum and
conservation of energy...

e not a 2-body decay
e must be a third unseen particle

n—>p—|—e + UV

“ghost-like” particle

Relative number

of electrons

Momentum
Distribution

1.19 MeV/c

1 1 1 1

Momentum (MeV/ic)

by Wolfgang Pauli.

Reines.

Discovered in 1956 by Cowan and

33



Fundamental Particles by ...

neutrino 1/

electron

George Gamow
THIRTY YEARS
Pro 1'0 n p THAT SHOOK
PHYSICS

The Story of Quantum Theory

neutron Tl
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Heisenberg Uncertainty Principle

precision of . momenfum
h transferred

measurement »AZL‘ ~
Ap

where h~6.32 x 10732 Js

Why we need large, expensive high energy
accelerators?

If you want to probe something at small
distances, you have to kick it hard!

35



Heisenberg Uncertainty Principle

AEAL> -

27T

The more accurately we know the energy,
less accurately we know how long it
possess that energy.

The energy can be known with perfection,
AE=0, only if measurement is made over a
long period of time At=co



The "Modern” Period

1932 — 1974
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-Becquerel: ionization of air
caused by radioactive elements
underground;

-Victor Hess measures air
lonization level in a balloon:
“radiation of high energy enters
from above”.

-much higher energies

than available in the lab: higher
energies could produce more
massive particles.




Antimatter

1932-Carl D. Anderson discovers the anti-

electron, the positrons

it
(same mass, but positive charge) Positron

track

_|_

€

© Copyright California Institute of Technology. All rights reserve
Commercial use or modification of this material is prohibited.
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Discovery of the Muon

1937-also Anderson discovered a heavy
electron (105.7 MeV/c2) - the muon l’l’

Who ordered

Same charge just like the
electron, but about 200
fimes more massive.

Isaac Rabi
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Particles Discoveries

1935, pions were theoretically predicted by Hideki

Yukawa

1947: pions were discovered using photographic
mulsnons a’r hlqh al’rn‘udes
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1952-The Bubble chamber

Donald Glaser

Camera

A A

7 A ™
O L
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@) Liqu
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Particles 8
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8 Piston
oV TN

\ |

|

Magnetic field

Magnet coils

0000000000000

The bubble chamber is made by filling a large cylinder
with liquid hydrogen heated to just below its boiling
point. As particles enter the chamber, a piston
suddenly decreases its pressure, and the liquid enters
info a superheated phase. Charged particles create an
ionization track, around which the liquid vaporizes,
forming microscopic bubbles. Bubble density around a
track is proportional to a particle's energy loss.
Bubbles grow in size as the chamber expands, until
they are large enough to be seen or photographed.
Several cameras are mounted around it, allowing a
three-dimensional image of an event to be captured.
Bubble chambers with resolutions down to a few pum
have been operated.

The whole chamber is subject to a constant magnetic
field, which causes charged particles fo ftravel in
helical paths whose radius is determined by their
charge-to-mass ratios..
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http://en.wikipedia.org/wiki/Charge-to-mass_ratio

Structure of the Nucleus

proton neutron

1953 -Hofstadter scattered 125
MeV(10%eV) electrons off of nuclei. o—

o —
10°
10*
10°
dN
dcos B 102 "
Scale Hofstadter's electron scattering
arbitrary - data dropped below that expected
10’ . for a point nucleus, indicating
ol structure of the nucleus.
1
10 -1 | 1 L 1 1 [
-1.0 -0.5 0.0 0.5 1.0
cos 6

nuclear size: 10713 cm o




Structure of the Proton

1956—Hofstadter scattered 550Mev
electrons off of a proton.

s eI

Spectrometer

Electron Linear Acc at Stanford University (SLAC)

The proton has a size, it is not a point-like object.
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The Bevatron (1954-1993)
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6 GeV proton synchrotron
in the hills of Berkeley

Fmag — Fcentripetal
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More particles - Particle Data Group

https://pdg.lbl.gov/index.html

A (Delta) particle,

2. (Sigma) particle,

Kaon - Caltech,

Antiproton - Berkeley, Segre&Chamberlain

n (Eta) particle,

= (Xi) particle - Brookhaven

N\ (Lambda) particle,

Tau particle - SLAC/LBL (Stanford and Berkeley)
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A classifications is needed

NAMES, CONSERVATION LAWS, RULES

Classical: energy, mass, linear momentum,
angular momentum

Q-electric charge (...,-1,0,+1,...)
S-strange number (...,-2,-1,0,+1,+2,...)
B-Baryon number (-1, O, +1)

L-lepton number (-1, O, +1)

Mesons (2 quarks), Baryons (3 quarks), Leptons,
Bosons, ... "



(n)——p) =l
/ \ /‘;»/ A \E =
\ / \sr— s/ e
Q=1 Q=0 Q=+
meson oc’re’r baryon octet
Q=1 Q=0 Quel Que2

S=0_(A (A A A

prediction: \ | /
O~

bound state of
3 strange quarks baryon decapet

Q
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33 GeV proton synchrotron
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e A et b ey e
g it

Who with who collision?

80-inch bubble chamber 51




30 GeV

electrons




Quarks and anti-quarks ???

P strange
down

mesons: Q4

baryons: (d{

Murray Gell-Mann
How quarks were discovered?
Who with who collision?

How quarks were named?
http://hyperphysics.gsu.edu/hbase/Particles/quark.html#cl

53



Inside the Proton
SLAC - MIT Group

e

. Etid Station &

3
2

Friedman

Kendall

Rutherford scattering off
of a point objects again
-deep inelastic scattering
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Inside the Proton

electron

e —_ electron
> photon fragment RK
proton —7 quark
uar

\/q
N

w W @ @
d W

proton neutron 55




Fundamental Particle Physics by ..

Ve Vg igauge boson
leptons o

e KM )

U i
quarks i

d S

Compare with 1932 classification
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The Golden Period
1974 — 1982

57



Discovery of a New Quark

1974 SPEAR —
Berkeley ?
Stanford group ?

Electron-positron collision at 3GeV

J-psi meson

€ € —

J/
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3000

lﬁ | 1 | |
1000 +—
- :
& = L ]
B |
‘;, B . \ psl {5105) psl [3655)
g 100 — e
£ E
| 8 J
Burt Richter o -

@ S.I.anford 30 342 3.4 3.68 370 572

Emergy (billon electron volts)

bound state of charm and anti-charm quarks.

Charmonium !
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physics, US politics and money

1990, Waxahachie, south of Dallas, Texas

* Superconducting Super Collider (SSC), 87.1 km
circumference, 20 TeV/proton x2

- Aprox 7 billion dollars il e
» cancelled in 1993 G i SRV
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Discovery of a New Heavy Electron

+e_—>7' T

Elec’rron-posﬁron
collision at ~3GeV

€

— Tau lepton (just like

- electron except about
2000 times more
massive.
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Fermilab

400 GeV Proton Synchrotron

2km (1.3mi) diameter ring

'-},'T:

Robert
Wilson




Discovery of Another New Quark

pp — ¥ + X
T —p*p”

/N T//g Bés/N”/U6, 09 o0, ,

Letererman
43 Ent
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Discovery of the Gluon

1979 30 GeV ete- Collider

carrier of the strong force
Quantum Chromo Dynamics

binds quarks together
to make proton

65



FEYNMAN e
DIAGRAMS

Since 1948-a visual

representation of }w\/
particle interactions in ™
quantum field theory.

-Squiggly, dotted, ><

areen-

[ ] [ ) [ ] o \ntit e
straight lines with
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The Standard Model

Quantum Electrodynamics
charged particles interacting
by photon exchange

atomic physics

€ €
)1
€ €
Quantum Chromodynamics q q
quarks interacting
by gluon exchange g
binding of quarks
q q
Weak Force
particles interacting 14 v
;E
L
q g *

by W and Z exchange
heavy lepton decay
heavy quark decay
neutrino interactions

A
~
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CERN

Off to the French Alps

proton — antiproton
collisions at 450 GeV
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Discovery of the W and Z bosons
1982
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The Recent Period
1982 — 2012
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Large Electron-Positron (LEP)

100 GeV electron - positron

1989 - 2000
collisions at CERN
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Z Factory

Over 10 million Z’ s produced
and decays studied by four
large detectors

N e e

+ -
e e —hadrons

..........




Precision Tests of Standard Model

e Standard Model tested to 0.1% level

in agqreement with all measurements
/ — VU

down to 107 cm

* Only three light neutrinos

e Higgs still missing
ete” — ZH
m, c® > 114 GeV

30 -

0-had [I‘I b]

10

ALEPH
DELPHI
L3

OPAL

0
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Discovery of the Top Quark

1995 2 TeV Proton - Antiproton collisions

Fermilab Tevatron Collider

Production top anti-top

m muon
Jet1(b) o :
" V
% H neutrino
o
i b » proton beam
2
%
VI
\
neutrino % a
2. @
@ -
s Jet 2 (b)
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The Large Hadron Collider

14 TeV proton antiproton
collisions in the LEP tunnel

probing matter at
the 10" cm scale

2012
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6 min
Large Hadron Collider - Animation Video

https: //www.youtube.com/watch?v=FLrEghnKncA
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https://www.youtube.com/watch?v=FLrEghnKncA

Summary

- omplefe, consistent theory of fundamental physics

# Fundamental constituents:

6 quarks and 6 leptons
plus antiparticles

# Three fundamental forces:

Electromagnetic Strong Weak
mediated by mediated by mediated by
photons gluons W' W™ Z

# Agrees with all experiments to 107° c¢m

®* Higgs particle
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As of now, 2024, this is it ...

Standard Model of Elementary Particles

interactions / force carriers

three generations of matter

three generations of antimatter

(elementary fermions) (elementary antifermions) (elementary bosons)
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