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Gravitational Waves

Originate from accelerating masses
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Gravitational Wave Detectors

and Sources

Stochastic Gravitational Wave Sensitivity
background
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http://gwplotter.com/

MAGIS-100 — A next-generation atom interferometer to search for new physics (fnal.gov)
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https://magis.fnal.gov/
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Gravitational Wave Detectors

and Sources
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Generating gravitational waves

* Time varying mass quadrupole
generates gravitational waves

* Binary system is ideal
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Black Hole Binary Mergers

1le—21 100M, BBH from 10 Hz

e Orbits decay due to emission of 1.0/
gravitational waves
5 | ﬂ' | ﬂ 1
* Both amplitude and frequency of % oo WN\{W\/%\MMW M ‘
gravitational waves increase as = | I \ J | ‘

binary approaches merger
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1e-21 100M, BBH from 10 Hz

Black Hole Binary Mergers - AMEAAMAA W “
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black holes
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* Frequency scales with mass | | | | |
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 Amplitude and duration scale with mass
1e—19 10*M, BBH from 0.1 Hz

e Other features, such as mass ratio and spins, also 10
impact the waveform . |
* For neutron star or white dwarf binaries, matter s . /W\(\ PHMW M \Wﬁ ‘l“\W WH “
effects become important before merger % e NM I JUU\ \JUJU/UUM J‘
* For distant sources, signal is redshifted to lower )
frequency ~1.0
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Gravitational Wave Detectors

and Binary Mergers

* Plot sensitivity in terms
of “characteristic strain”

e Can “integrate by eye”
so that area between
sighal and noise curve
gives the signal to noise
ratio

e Although amplitude
increases at later times,
binary spends longer at
low frequencies, giving
more power
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Future Atom Interferometer Sensitivity
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From Badurina et al, https://doi.org/10.1098/rsta.2021.0060 f (Hz) 12



https://doi.org/10.1098/rsta.2021.0060

Future Atom Interferometer Sensitivity

AION 100m

From Badurina et al, https://doi.org/10.1088/1475-7516/2020/05/011 -



https://doi.org/10.1088/1475-7516/2020/05/011

Seed black holes

" Quasars observed at redshiftz> 7
[less than 1 billion years after the big
bang] are powered by black holes with
mass > 10° Mg

redshift

= Likely population of seed black holes at

high redshifts that grow through 4 |
accretion and mergers to form
supermassive black holes N
" Light seeds will be observable to next- \§ W
. ‘(OO~ \\
generation GW observatory Bl s et
10 102 103 104 105 108 107 108 102 1010

» Growing seeds (around 10°-10* M) CE/ET Mgq [My] LISA
are a clear target for deci-Hertz

: From Valiante et al https://arxiv.org/abs/2010.15096
observatories ps:// g/abs/
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https://arxiv.org/abs/2010.15096

Stellar mass black holes: Eccentricity

* Binary black holes are
expected to form in
eccentric orbits

e Eccentricity is radiated at a
faster rate than orbit shrinks
— binaries circularize

* Observing at lower
frequencies is best way to
measure eccentricity and
identify formation scenario
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Distribution of eccentricities p(e)

From Sedda et al, https://doi.org/10.1088/1361-6382/abb5c1
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https://doi.org/10.1088/1361-6382/abb5c1

Type 1A Supernovae

Believed to originate from either

* The merger or two white dwarfs
(double degenerate channel)

e Accretion onto a white dwarf
(singe degenerate channel)

Gravitational wave observation
associated with nearby 1A
supernova (or lack of) would
provide clear evidence of the

channel.
Mandel et al, https://doi.org/10.1088/1361-6382/aaa7e0

Kinugawa et al, https://doi.org/10.3847/1538-4357/ac9135

Need sensitivity to signals to tens
of Mpc to observe ~1 event per
year.
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https://doi.org/10.1088/1361-6382/aaa7e0
https://doi.org/10.3847/1538-4357/ac9135

Fundamental Physics: Testing Relativity

* Gravitational waves provide ideal
laboratory for testing relativity
e Strong field GR in merging binaries
* Propagation of GWs

* Ability to measure/bound
deviations from GR scales with
signal to noise ratio in (part of)
signal being used

* Some alternative theories predict
features in the deci-Hertz range

1.0

Final spin ay

O I S BN S N S S
40 50 60 70 80 90 100 110 120

Final mass M ¢ (M)

e.g. measuring consistency of mass and spin from

Inspiral and ringdown parts of GW150914 signal
From Abbott et al, https://doi.org/10.1103/PhysRevLett.116.221101
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https://doi.org/10.1103/PhysRevLett.116.221101

Stochastic Gravitational Wave Background

e Expected to be a GW
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background, similar N ‘]
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e Exact features model
dependent
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From Ellis et al, arXiv:2308.08546
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https://arxiv.org/abs/2308.08546

Stochastic Gravitational Wave Background

* Cosmological background likely 107 1 ——— ——
obscured by astrophysical | \oporews —uokensacwe
background(s) 10-10 ] el forearoune

e Deci-Hertz range is ideal for |

. oy
searching for the GW G107
background, as it’s above the '

galactic and white-dwarf binary m
astrophysical background :
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From Staelens et al, arXiv:2310.19448
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Benefits of a network: Detection

* Increased detection v
confidence through 0w 104
coincident observation S‘B

* Improved sky coverage and § o
live-time "

¥}

* Ability to observe both =
gravitational-wave = W
polarizations "

10.0 100.0 1000.0

P
From Babak et al, arXiv: 1208.3491
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https://arxiv.org/abs/1208.3491

Benefits of a network:
Signal Interpretation

* Higher signal to noise ratio from network of
detectors

* Multiple measurements break parameter
degeneracies, e.g. between sky location,
orientation, distance

* Localization will be challenging in deci-Hertz

 Timing accuracy ~ (p f,,q)*
comparable to light travel between sites

* Earth rotation/orbit should enable
localization of long-lived sources

307

|

=307

Example: GW190814 localization
with 2 or 3 detectors

BAYESTAR LV
BAYESTAR HILM
Latest Circular

Combined PHM




Summary: Deci-Hertz Opportunities

From Sedda et al, https://doi.org/10.1088/1361-6382/abb5cl

Several unique observing opportunities in 10"
the deci-Hertz band |

* Observation of intermediate mass BH
binaries providing insight into
supermassive BH formation

e Eccentricity in stellar mass BH binaries

Characteristic Strain

e White dwarf binaries associated with
Type 1A supernovae

* Possible stochastic backgrounds

Frequency [Hz]
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