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Motivation E DLR

= Applications of atom interferometers based on single-photon transitions:
» GW detection in mid-frequency band (100-m prototypes not sensitive enough)

» Search for ultralight dark matter (modest exclusion bounds at early stages)

= Are there other interesting measurements (rather than mere null tests) that can be preformed?

Yes, local measurement of relativistic time dilation with freely falling atoms.

» Useful methods for theoretical modelling of such interferometers.
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Relativistic effects in freely falling clocks
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Quantum clock model EDLR
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» Theoretical description of the clock:

» two-level atom (internal state):

mip = Mg
H = H @lg)gl + H @ le){e ma = mg + Am
Am = AE/c?
» classical action for COM motion:
dxt? dx?
7 — 2 — _ o —=1.2
S [z (N)] e /dT mnc/d)\\/ v s (n=1,2)

free fall
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» Theoretical description of the clock:

» two-level atom (internal state):

mip = Mg
H = H @lg)gl + H @ le){e ma = mg + Am
Am = AE/c?
» classical action for COM motion:
Sp 2" (N)] = —mnCQ/dT— /dTVn(x”) (n=1,2)

including external forces
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Propagation of matter-wave packets in curved spacetime ‘#DLR
(relativistic description)

» \Wave-packet evolution in terms of
» central trajectory (satisfies classical e.o.m.) X*(\)

» centered wave packet |¥{" (7c))

Ap/m < ¢ Az <l <«

curvature radius
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Comoving frame: XH(re) = (e, 0) #
(Fermi-Walker) g DLR

H, = m,c + V,(1.,0) + H™

4 )
= Wave-packet evolution: [\ (7)) = €/ [ (1))

» propagation phase

S, = —/ 2alTC (mnc2 —I—Vn(TC,O))
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» centered wave packet
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For further details:
DLR

PHYSICAL REVIEW X 10, 021014 (2020)

Gravitational Redshift in Quantum-Clock Interferometry

Albert Roura
Institute of Quantum Technologies, German Aerospace Center (DLR),
Soflinger Strafle 100, 89077 Ulm, Germany and Institut fiir Quantenphysik,
Universitit Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany

» Relativistic description of atom interferometry in curved spacetime.
» Including external forces and even guiding potentials.

» Relativistic interpretation of the separation phase in open interferometers.
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Relativistic time dilation for a freely falling clock ‘#DLR

A » Freely falling clock (FF):
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»  Static clock at constant height (S):

5¢ = —(AE/R) (14 Up/c?) T

» Natural implementation: compare atomic fountain clock to optical lattice clock.

» BUT accuracy of best atomic fountain clocks insufficient by more than an order of magnitude.
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Freely falling clock with internal-state inversion EDLR

» Simultaneity hypersurfaces in the lab frame.
(equal time separation)

» Unbalanced proper times (before and after inversion)
due to relativistic time dilation:

0 = =2 (AE/R) (vo-gT? + ¢*T?) /2

2
i _ 1—i(dX) + iU(t,X)

dt 2¢2\ dt c?
- / \
special relativistic gravitational redshift
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Freely falling clock with internal-state inversion EDLR

A | » Possible implementation with Doppler-free E2—M1
' ' ' two-photon pulses at Ao = 2 x 698 nm .

= Drawbacks:

« dedicated high-power laser needed at \-

= residual recoil (mAv =—-Amv)

= Let us consider atom interferometers based on
ot single-photon transitions.

Y
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Atom interferometer as a freely falling clock
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Atom interferometer based on single-photon transitions EDLR

» Proper time along a freely falling world line (geodesic) and elapsed between two light rays.

» Retardation effect due to the finite speed of light: i
. — |dt /
di = dt + (i - v/c) di + O(1/c?) 7
dt
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Atom interferometer based on single-photon transitions

» Proper time along a freely falling world line (geodesic) and elapsed between two light rays.

» Retardation effect due to the finite speed of light: (stationary spacetime)

dt =dt+ (n-v/c)dt +O(1/c?) —_— ot !

» Relativistic time dilation:

special relativistic gravitational redshift
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Atom interferometer based on single-photon transitions EDLR

A T T (a) J T T (b)

> Fw > tFw

» Freely falling frame comoving with the mid-point world line (Fermi-Walker frame):
» light rays (laser wave fronts) have fixed slope,

» shifts due to Doppler effect (opposite sign in reversed interferometer) and time dilation (same sign).
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» |t is sufficient to calculate the proper times along the mid-point world line rather than the
actual arm trajectories (negligible higher-order corrections to total phase shift).

= Proper time as a function of the phase ¥, invariant characterizing each laser wave front:
ﬁ B @ d_f ﬁ _dr 1 dt
de dt dt \dp) dt \1—n-v/c) \dy

» The Doppler factor can be (partially) compensated through a suitable frequency chirp:
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= Phase-shift calculation:

on d7—_ QWOT d7—_
2o [ (E)
/O <d90> wol’ dSD

. For an approximately uniform gravitational field, X (¢) = v + g (¢ — o) and
0p =—2(AFE/h) (\70 .gT? + g2T3) /2 + 0Peorr

=« It agrees with the result for an ideal freely falling clock if 0.+ can be kept small enough.
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For an imperfect match of the chirped frequency, with Ag = g — g’ and Avy = vy — v{,.

5¢COHZAE (ﬁ'Ag)T2+2(fl'A‘_’o)(ﬁ'g)T2+ (n-vo) (n-Ag) T2+3(ﬁ-g)(ﬁ-Ag)T3]

h c c? c? c?

The dominant term is linear in n and can be suppressed by adding up 0¢ for two interferometers

with opposite 1. (reversed interferometers)

The above result can be straightforwardly generalized to a time dependent Ag(t).

This can naturally account for laser phase noise and vibrations of retro-reflection mirror.
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Reversed interferometers
DLR

J T T (a) J T T (b)

> lFw > lrw

= Uncompensated Doppler contribution cancels out when adding up their phase shifts.

» Effects of mirror vibrations and laser phase noise (for reversed interferometers in different shots)
do not cancel out =—» “gradiometric” configuration.
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“Gradiometric” configuration EDLR

» Differential phase shift between interferometers
launched with different velocities (4 and B):

dpa —0¢p = —2(AE/h) (Vg —v() -gT?/c?

Similarly for pair of reversed interferometers:
(a) and (b)

Comparison between two freely falling clocks.

¢ ¢ (no need for time reference in lab frame)
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Experimental implementation
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Gradiometric configuration in MAGIS-100 with two simultaneous interferometers
launched from the top and bottom atom source.

AOM driven by a stable rf source =—» second frequency component.

For v{{ = —(20m/s)z and v = (40m/s) z respectively, one gets 6¢” — §¢” = 35rad.

With N = 10° detected atoms, a shot-noise-limited sensitivity at the 10~ level can be
reached in a hundred shots.

Stanford’s 10-m prototype or AION’s 10-m fountain could also measure these time dilation
effects with about two orders of magnitude lower sensitivity.



Main systematic effects EDLR

Effects suppressed when adding up the phase shift for reversed interferometers:

» gravity gradients (co-location at 0.1 mm and 0.1 mm/s level —>» 10~ relative uncertainty)
» rotations

» wave-front curvature & light shifts

= Pulse timing requirements: AT < 0.1 us and § < 300 Hz —>» 107° relative uncertainty

Magnetic field inhomogeneities: 3 nT/m —>» 10~ relative uncertainty

Temperature gradients: 2 K/ 100 m = contribution at 10~ level
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Equivalence principle violations & external forces
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External forces EDLR

= The coupling of neutral atoms to magnetic fields and far detuned radiation can be
described with state-dependent external potentials.

= Replacement in the action: my, U(t', X) = m, U(t',X) + V,(t', X)

= Modified mean acceleration:

a=g—VV,/my, Vn5%<¥—a+ﬁ)
= Relative acceleration between the two internal states:

m2 mi

Sa = —V(5V,)/mn 5V, = my, (ﬁ - ﬁ)
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Fermi-Walker frame (mid-point trajectory with acceleration a).

Modified arm trajectories + separation phase =—» no net phase-shift contribution.

Key contribution to the action evaluated along the mid-point trajectory:

_ _ v, (t', X L (X
Va(t!, X) — Vi (', X) = Am XD g OVl X)

m = (my+mso)/2~m
m’n m'n

Result for a uniform (state-dependent) force:

AE o _ m _ _
0p = T 2 (VO'aT2 +a’ T3) /c* + (m) (5a-V0T2 —|—5a-aT3) /c?
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Equivalence principle violations EDLR

= Consider a dilaton model as a consistent parametrization of equivalence principle violations.

= Replacement in the action: m, U(t', X) — m, (14 3,) U(t',X)

It can be regarded as a particular case of state-dependent external potential (previous slides).

» The phase-shift result coincides with that for an ideal clock following the mean trajectory:

6¢ = —2(AE/h) (1 + qeg/2) (Vo -8T° +g°T°) /c”
Qe_g — (62 — 61) (%)
Test of universality of gravitational redshift (UGR).
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Discussion and conclusions
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Comparison to quantum-clock interferometry

and other proposals
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Quantum-clock interferometry DLR

PHYSICAL REVIEW X 10, 021014 (2020)

Quantum superposition of a single clock
Gravitational Redshift in Quantum-Clock Interferometry

at two different heights

Albert Roura

¢ [nitialization pulse after the spatial superposition X
has been generated.

e Doubly differential measurement:

» state-selective detection

» compare different initialization times
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Quantum-clock interferometry DLR

PHYSICAL REVIEW D 104, 084001 (2021)

Measuring gravitational time dilation with delocalized
quantum superpositions

Albert Roura®,' Christian Schubert,” Dennis Schlippert,” and Ernst M. Rasel”
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Quantum-clock interferometry DLR

PHYSICAL REVIEW D 104, 084001 (2021)

Measuring gravitational time dilation with delocalized
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Comparison with current proposal

= Quantum-clock interferometry: single clock in a delocalized quantum superposition

of two wave packets experiencing different gravitational time dilation.

= Current proposal: each atom interferometer acts as a freely falling clock; comparison

between two independent clocks in the “gradiometric” configuration.
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Proposed UGR test with atom interferometry 4#7
DLR

F. Di Pumpo, A. Friedrich, C. Ufrecht, E. Giese
Phys. Rev. D 107, 064007 (2023)

= Null test: non-vanishing result in case of gravitational redshift differences for different isotopes
(e.g. 87Sr and 88Sr)

» Forbidden clock transition for bosonic isotopes such as €8Sr unless a strong transverse magnetic field is applied
-3 not a viable option for precision measurements with VLBAI.

=« Little dependence of AE o m, ac? on the nuclear isotope = effects of UGR violations nearly the same

for both isotopes.
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Conclusions
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Atom interferometers based on single-photon transitions can be used as freely falling clocks
for time dilation measurements.

Unprecedented measurement of relativistic time dilation in a local measurement with freely
falling atoms.

It could be implemented in MAGIS-100 with virtually no additional requirements.

A version with limited sensitivity could also be implemented in Stanford’s 10-m prototype or
AION’s 10-m fountain.

Main challenge for achieving higher sensitivities =—» temperature gradients.

Further improvement through measurements of temperature profile and post-correction.
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Other related activities

43 Albert Roura, Institute of Quantum Technologies, 03.04.2024



Q-GRAV Project 2
DLR

Interface of Quantum Mechanics and Gravitation

= Main Topics: 1. Atom interferometry
2. Matter-wave lensing for cold atoms

3. Relativistic quantum information

= [eam members:

Nadja Augst Nico Schwersenz Albert Roura
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ESA-related activities E DLR

= ACES Mission (launch in 01/2025)

AIRBUS esa

» high-precision measurements with cold atoms in space EEE
()

» tests of general relativity, relativistic geodesy,
intercontinental time / frequency distribution

T @
ACES Workshop 2023 organized in Ulm. orolid

» Co-Chair of ESA's Physical Sciences Working Group (PSWG). @ e S a

Member of ESA’'s Space Science Advisory Committee (SSAC).
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Thank you for your attention.
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