

Quantum sensing with ultracold atoms in phase modulated optical lattices

Dr Carrie Weidner

Quantum Engineering Technology Labs University of Bristol 3 April 2024

bristol.ac.uk

Physical Sciences Research Council

The preliminaries

Making bosonic atoms very cold

- If you get bosonic atoms cold enough $(\approx 100 \text{ nK})$, their deBroglie wavelength is on the order of the inter -particle spacing
	- This is known as a Bose -Einstein condensate, or BEC.

ATOM BEC

g

MOT

- The atoms become mutually coherent, like the photons in
- $-$ Our "at \blacksquare control)

LASER

Trapping atoms with light

- Light induces a dipole moment in an atom $\vec{d} = \alpha \vec{E}$
- This gives rise to a force and potential $\vec{F} = -\nabla U \propto -\alpha(\omega)I(\vec{r})$
- For red-detuned light ($\Delta = \omega_{light} \omega_{atom} < 0$) this potential is attractive, and the atoms move towards the intensity maxima.
- Depth

 $U \propto I(\vec{r})/\Delta$

• Scattering rate

 $\Gamma_{\rm sc}\propto I(\vec{r})/\Delta^2$

We want a lot of power from a laser fardetuned from resonance!

The optical lattice: an egg carton for atoms

Reflect a dipole laser back on itself to create a sinusoidally-varying potential

 $V(x) = V_0 \cos(2k_L x)$

• Depth typically expressed in recoils

$$
V_0 = sE_R = s\frac{\hbar^2 k_L^2}{2m}
$$

• Can work in (up to) three dimensions!

How do we describe the atom wavefunction in a lattice?

- Two (equivalent) bases are commonly used
- Bloch functions
	- Atoms delocalized in position, localized in momentum space
	- Gives rise to band structure within a Brillouin zone
- Wannier functions
	- Atoms localized in position space (to a single lattice site), delocalized in momentum space
	- Composed of sums of Bloch functions in a given band
- Localized or delocalized? It depends on the lattice depth (and the problem).
	- Deeper lattices: more localized atoms
	- SLI uses shallow lattices—**we control the momentum states of the atoms!**

Inertial sensing with ultracold atoms trapped in phase-modulated optical lattices [PRL **120**, 263201, (2018)]

Experimental Demonstration of Shaken-Lattice Interferometry

C. A. Weidner and Dana Z. Anderson[®]

Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA

(Received 28 January 2018; published 27 June 2018)

Shaken lattice interferometry: building a sensor with atoms in optical lattices

The recipe:

- Take your favourite atom, and make it very cold
- Load it into the ground state of a **shallow** optical lattice potential
- Modulate the lattice to implement the atom-optical elements of an interferometer $V(x, t) = V_0 \cos(2kx + \phi(t))$ **What we control!**

Building a shaken lattice interferometer

- Work in the Bloch basis: atoms delocalized in position, localized in momentum
- Starting with atoms in the ground state of the lattice potential, we implement:
	- Splitting
	- Propagation
	- Reflection
	- Reverse propagation
	- Recombination back into the ground state
- The best shaking function $\phi(t)$ is determined via optimal control

Building a shaken lattice interferometer

- Measurement: relative population in the atoms' momentum states
	- Define a vector \vec{P} with elements $\{P_n\}$ containing the relative population in the $2n\hbar k$ state
	- We do not have access to phase information!
- Once the shaking function is known, it is fixed.
	- Can then calibrate the system's response to a signal (acceleration a)
	- Scale sensitivity by changing the total interrogation (shaking) time T

Image credit C. LeDesma et al. arXiv:2305.17603, (2023).

But is it a sensor? Adding a signal

- We determine a signal by measuring how the atom momentum populations change with the applied signal
- The magnitude and direction of a signal is easily determined here, due to symmetry breaking as the lattice begins to shake
- **•** Use the classical Fisher information F_c to define \underline{a} minimum detectable acceleration $\delta a = 1/\sqrt{F_c}$ given the momentum population vectors \vec{P} that we measure.
- CFI:

$$
F_C(a) = N_{at} \sum_{n=-N}^{N} \frac{\left(\partial P_{a,n}/\partial a\right)^2}{P_{a,n}}
$$

- Use this to find how δa scales with T
- Simulations (experiments) give $n = 2.21 \pm$ 0.31 (1.96 ± 0.13) consistent with typical atom interferometers where $n = 2$.

- **E** Build a 3D lattice system in Bristol
- Demonstrate a multi-axis inertial sensor (3 axes of acceleration, 3 axes of rotation)

- Build a 3D lattice system in Bristol
- Demonstrate a multi-axis inertial sensor (3 axes of acceleration, 3 axes of rotation)
- Open question #1: What is the best scaling with T that we can get?

Abstract

New Journal of Physics The open access journal at the forefront of physics

ikalische Gesellschaft (DDPG **IOP** Institute of Physics with: Deutsche Physikalische Gesellschaft and the Institute of Physics

PAPER

Simplified landscapes for optimization of shaken lattice interferometry

CA Weidner and D Z Anderson¹

Motivated by recent results using shaken optical lattices to perform atom interferometry, we explore the splitting of an atom cloud trapped in a phase-modulated ('shaken') optical lattice. Using a simple analytic model we are able to show that we can obtain the simplest case of $\pm 2\hbar k_L$ splitting via single-frequency shaking. This is confirmed both via simulation and experiment. Furthermore, we are able to split with a relative phase θ between the two split arms of 0 or π depending on our shaking frequency. Addressing higher-order splitting, we determine that $\pm 6\hbar k_L$ splitting is sufficient to be able to accelerate the atoms in counterpropagating lattices. Finally, we show that we can use a genetic algorithm to optimize $\pm 4\hbar k_L$ and $\pm 6\hbar k_L$ splitting to within $\approx 0.1\%$ by restricting our optimization to the resonance frequencies corresponding to single- and two-photon transitions between Bloch bands. As a proof-of-principle, an experimental demonstration of simplified optimization of $4\hbar k_L$ splitting is presented.

- Build a 3D lattice system in Bristol
- Demonstrate a multi-axis inertial sensor (3 axes of acceleration, 3 axes of rotation)
- Open question #1: What is the best scaling with T that we can get?
- Open question #2: How robust is this method in the real world?

Statistically characterizing robustness and fidelity of quantum controls and quantum control algorithms

PHYSICAL REVIEW A 107, 032606 (2023)

Analyzing and Unifying Robustness Measures for Excitation Transfer Control in Spin Networks

Time-Domain Sensitivity of the Tracking Error

Sean O'Neil[®], Member, IEEE, Sophie Schirmer[®], Member, IEEE, Frank C. Langbein[®], Member, IEEE, Carrie A. Weidner[®], Member, IEEE, and Edmond A. Jonckheere[®], Life Fellow, IEEE

> $-0.6 - 0.4$ -0.2 0.6

> > Wavelength variation (%)

 $I - V =$

- Build a 3D lattice system in Bristol
- Demonstrate a multi-axis inertial sensor (3 axes of acceleration, 3 axes of rotation)
- Open question #1: What is the best scaling with T that we can get?
- Open question #2: How robust is this method in the real world?
- Open question #3: What are the fundamental limitations of shaken lattice interferometry?

Thanks to:

--The Bristol team: Dr.Vineet Bharti (experiment), Dr. Dhritiman Chakraborty (theory), Harry Kendell (both experiment and theory) --Collaborators Prof. Sophie Schirmer (Swansea), Prof. Frank Langbein (Cardiff), Prof. Edmond Jonckheere and Sean O'Neil (USC)

Thank you for listening!

bristol.ac.uk

