# Progress towards a squeezed-state atom interferometer in a ring cavity



TVLBAI 2024

**Onur Hosten** 





#### "Outskirts of Vienna" Klosterneuburg, Lower Austria



Hosten Group at IST Austria (since 2018):

Quantum sensing with atoms and light https://hostenlab.pages.ist.ac.at

## Outline





#### Special techniques



Squash locking

## Precision sensing with atoms



Atomic clocks (resolve gravitational time dilation)

Molecules for Electron EDM searches energy level shifts in E field (constraining supersymmetry)





Atom interferometers (Testing Einstein's equivalence principle) (Gravitational wave detection) (Searches of dark energy) (Determination of fine structure const.) (Gravimetry, inertial navigation)



#### In common:

- Reduce to sensing w/ two-level quantum system
- Can be improved via entanglement (spin squeezing)

## Spin squeezing experiments

#### Illustrate the main experimental techniques with work we did back at Stanford



doi:10.1038/nature16176

## Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

Onur Hosten<sup>1</sup>, Nils J. Engelsen<sup>1</sup>, Rajiv Krishnakumar<sup>1</sup> & Mark A. Kasevich<sup>1</sup>

- 20 dB spin squeezing and & atomic clock demonstration

## A formal view for atomic sensors

2-level atoms: Spin 1/2 systems (87Rb hyperfine clock states)

Spin N/2 system: Collective angular momentum vector J



Coherent spin state (uncorrelated spins) Representation on Bloch sphere (Wigner)

 $J_z$ : Population imbalance (-N/2 to N/2) Arg[ $J_x + i J_y$ ]: Phase difference between two levels

Uncertainty relation: $\Delta J_z \Delta J_y = N/4$ Shot noise: projection onto  $J_z$  axis  $\sqrt{N}/2$ 

## Spin Squeezed Atomic States

#### Spin squeezed states:



Reduced noise in  $\Delta J_z$  at the expense of  $\Delta J_y$  $\Delta J_z < \sqrt{N}/2$ 

Necessarily implies entanglement

Can sense phase/population changes more accurately



### Generic atom sensor



Reduced noise  $\Delta \theta \sim 1/N$  in principle

## Many-atom cavity QED implementation



Cavity resonance shift: 5.5 Hz per spin-flip (8kHz linewidth) Technical noise floor: 3 spin-flips (out of 1M)

#### Homodyne detection:

10 nW path length stabilization sidebands ~10 pW probe (90 photons/pW)



Homodyne system: Shot noise limited from 10Hz – 5MHz

## Metrology demonstration: Tipping



 20 dB squeezed states, 18.5 dB direct metrology demo

## Squeezed microwave clock



Performance limit:  $\mu$ -wave LO

10.5dB boost: 11 times faster averaging.

## Key developments since...

#### Squeezed optical clock (2020)

**Entanglement-Enhanced Optical Atomic Clock** 

Edwin Pedrozo-Peñafiel,<sup>1,\*</sup> Simone Colombo,<sup>1,\*</sup> Chi Shu,<sup>1,2,\*</sup> Albert F. Adiyatullin,<sup>1</sup> Zeyang Li,<sup>1</sup> Enrique Mendez,<sup>1</sup> Boris Braverman,<sup>1,†</sup> Akio Kawasaki,<sup>1,‡</sup> Daisuke Akamatsu,<sup>1,3</sup> Yanhong Xiao,<sup>1,4</sup> and Vladan Vuletić<sup>1,§</sup>

<sup>1</sup>Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

<sup>2</sup>Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

<sup>3</sup>National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST),



#### Second-scale lifetime for squeezed states (2020)

#### Self-amplifying spin measurement in a long-lived spin-squeezed state

 Meng-Zi Huang<sup>1</sup>, Jose Alberto de la Paz<sup>2</sup>, Tommaso Mazzoni<sup>2</sup>,\*
 Konstantin Ott<sup>1</sup>,<sup>†</sup> Alice Sinatra<sup>1</sup>, Carlos L. Garrido Alzar<sup>2</sup>, and Jakob Reichel<sup>1‡</sup>
 <sup>1</sup>Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
 <sup>2</sup>LNE-SYRTE, Observatoire de Paris-Université PSL, CNRS, Sorbonne Université, 61 Avenue de l'Observatoire, 75014 Paris, France (Dated: July 3, 2020)



#### Mapping of internal-to-momentum entanglement – twin fock states (2021)

Momentum entanglement for atom interferometry

F. Anders<sup>1</sup>, A. Idel<sup>1</sup>, P. Feldmann<sup>2</sup>, D. Bondarenko<sup>2</sup>, S. Loriani<sup>1</sup>, K. Lange<sup>1</sup>, J. Peise<sup>1</sup>, M. Gersemann<sup>1</sup>,
B. Meyer<sup>1</sup>, S. Abend<sup>1</sup>, N. Gaaloul<sup>1</sup>, C. Schubert<sup>1,3</sup>, D. Schlippert<sup>1</sup>, L. Santos<sup>2</sup>, E. Rasel<sup>1</sup>, and C. Klempt<sup>1,3</sup>
<sup>1</sup> Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
<sup>2</sup> Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, D-30167 Hannover, Germany
<sup>3</sup> Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, c/o Leibniz Universität Hannover, DLR-SI, Callinstraße 36, 30167 Hannover, Germany



## Key developments since – cont.

#### 11.8 beyond SQL time reversal metrology (2022)

## Time-reversal-based quantum metrology with many-body entangled states

Simone Colombo<sup>® 1,4</sup>, Edwin Pedrozo-Peñafiel<sup>® 1,4</sup>, Albert F. Adiyatullin<sup>1,3,4</sup>, Zeyang Li<sup>®</sup><sup>1</sup>, Enrique Mendez<sup>1</sup>, Chi Shu<sup>1,2</sup> and Vladan Vuletić<sup>®</sup><sup>1</sup>⊠

#### 1.7 dB squeezed complete atom interferometry demo (2022) Entanglement-enhanced matter-wave interferometry in a high-finesse cavity

<u>Graham P. Greve</u>, <u>Chengyi Luo</u>, <u>Baochen Wu</u> & <u>James K. Thompson</u>

Nature 610, 472–477 (2022) Cite this article

1.6 dB differential squeezing between two ~co-located atom interferometers (2022) Distributed quantum sensing with mode-entangled spin-squeezed atomic states

Benjamin K. Malia, Yunfan Wu, Julián Martínez-Rincón & Mark A. Kasevich 🖂







## Outline





#### Special techniques



Squash locking

## Squeezed-state atom interferometry

Exploit squeezed states for force/acceleration sensing through atom interferometry

Applied aspect: Improve sensitivity of inertial sensors Fundamental aspect: Investigate large mass quantum superpositions

 $10^6$  atoms + 20 dB squeezing:

- Effectively equivalent to quantum interference with 10<sup>6</sup> atomic-mass unit collective object. (state of the art is 25000 amu)

Strategy:

Map spin squeezing onto spatial motion in a traveling wave cavity

## Mapping of entanglement to motional states

Raman-transitions: Spin-to-path mapping

State dependent momentum transfer:

- Flip internal states
- Impart  $\pm 2\hbar k$  momentum to atoms





## Traveling wave cavity



#### Role of the cavity

- 1) Radially trap atoms 1560 nm
  - (500 Hz radial trap freq., 1Hz axial...)
- 2) Generate and probe squeezed states
- 3) Assist spin-momentum mapping
  - (6.834 GHz hyperfine split cavity modes)

#### The constructed cavity

|                   | 780 nm, S-pol. | 780 nm, P-pol. |
|-------------------|----------------|----------------|
| Finesse           | ~36000         | ~2500          |
| Full linewidth    | 83 kHz         | 1.2 MHz        |
| FSR               | 3.05 GHz       | 3.05 GHz       |
| Mirr. refl. phase | 171°           | 140°           |

Finesse at 1560 nm: ~50000

Experimentally determined to obtain 6.834 GHz s- & p-polarization mode splitting

## The cold atom machine

#### 2D-MOT loads 20 M atoms



to be loaded into cavity dipole trap

## Traveling wave cavity – cont.



#### The high and low finesse modes



Cavity length adjustable up to 1mm through piezo stage to fine tune Raman modes.

in-vacuum µw antenna

work in progress for interferometry and squeezing

## Outline





#### Special techniques



Squash locking

## Squash locking – the idea

#### A competitive method for locking a laser to a cavity (and more)

- Measure the ellipticity of a laser beam reflecting form a cavity
- TEM00 + small amount TEM11  $\rightarrow$  elliptical beam
- Mode selective phase shift by the cavity near resonance



## Performance



## Bonus slide: A new direction in our group

#### Milligram scale optomechanics for gravitational and quantum physics

Towards generation of entanglement between two pendulums through gravity







#### Zigzag optical cavity to interface torsional motion with light

- Exclusive yaw motion optomechanical coupling
- S. Agafonova, ..., O. Hosten, PRResearch 2024

Optomechanical control of a 1 mg torsional pendulum

- Coldest oscillator from  $\mu$ g to kg: ~240  $\mu$ K (prev. record: 6.9 mK)

S. Agafonova, ..., O. Hosten, in preparation



## The group



Current group members Fritz Diorico (Entrepreneur) Vyacheslav Li (PhD student) Sebastian Wald (PhD Student) Sofia Agafonova (PhD Student) Umang Mishra (PhD Student) Edward Gheorghita (PhD Student)

#### Hosten Group at IST Austria:

Quantum sensing with atoms and light <u>https://hostenlab.pages.ist.ac.at</u>



Institute of Science and Technology Austria