

Continuous sources of ultracold strontium:

Towards continuous atom lasers

Shayne Bennetts Florian Schreck's group / University of Amsterdam www.strontiumbec.com

TVLBAI Workshop April 4, 2024

Why Lasers?

Laser beam

Light

Laser interferometer

Matter

Advantages of laser beams

Better

- brightness
- divergence
- coherence

...Potential for squeezing

N.P. Robins et al., Atom lasers: Production, properties and prospects for precision inertial measurement, Phys. Rep. 529, 265 (2013)

The problem with pulsed measurements (Dick efect):

- High flux for **signal**
- Low temperature for **coherence**
- Continuous/high rep rate for **bandwidth** and Dick effect

Continuous atom laser

Applications:

. . .

Concept: Continuous atom lasers?

N.P. Robins et al., Atom lasers: Production, properties and prospects for precision inertial measurement, Phys. Rep. 529, 265 (2013)

Bow to make a *pulsed* atom laser?

Free falling atom lasers

Institut d'Optique 2006

Our goal: *continuous* atom lasers

Why strontium? – Our tool set

- 1. Broad 30MHz "Blue MOT" transition Enables efficient slowing of an atomic beam
- 2. Narrow 7.4kHz "Red MOT" transition Laser cooling to high phase-space density

"Transparency beam" Protect from red photons Stark shift excited state with "transparency beam"

• High flux

- High PSD
- Protect from near-resonant red light

...Scattering cross section is only good for 84Sr (0.5% abundance (28)

A steady-state narrow line MOT

Phys. Rev. Lett. 119, 223202 (2017)

A steady-state narrow line MOT

phase-space density

Phys. Rev. Lett. **119**, 223202 (2017)

MOT I:

A fermionic steady-state narrow line MOT

Performance:

⁸⁷ Sr fermionic MOT :	⁸⁸ Sr bosonic MOT:
Loading = 1.31 x $10^7 a tom/s$	Loading = 2.3x $10^8 atom/s$
Lifetime = 4.84 s	Lifetime = 4.6 s
$T_{average} = 12.0 \ \mu K$	$T_{average} = 11.4 \ \mu K$

MOT comparison:

- Flux ratio: Loading $\binom{88}{5}$ /Loading $\binom{87}{5}$ = 17
- Abundance ratio: Abundance $(^{88}Sr)/Abundance(^{87}Sr) = 11.8$

Phys. Rev. Applied **12**, 044014 (2019)

×××

Zeeman slowing the guided beam

N : 2 x 10^{6} ⁸⁴Sr Temperature_{radial}: 0.95 ± 0.05 uK Temperature_{axial} : 6 ± 2 uK

But not a great spot for a BEC...fast incoming atoms \otimes

Nature 606, 683–687 (2022)

In situ

18 ms expansion

×

Nature 606, 683–687 (2022)

Estimating potential output flux

Fitted steady-state gain (potential atom laser output):

250,000 atoms/second !

Nature 606, 683-687 (2022)

Dimple number: Dimple temperature: Reservoir number: Reservoir loading:

7.4(2.4) x 10^{5} ⁸⁴Sr atoms 2.4(5) x 10^{5} atoms/s 6.9(4) x 10^{5} ⁸⁴Sr atoms T_{vertical} = 1.08(3) μ K 7.3(1.8) x 10^{5} 1.1(4) x 10^{6} atoms/s

Chun-Chia Chen, Shayne Bennetts Rodrigo González Escudero, Benjamin Pasquiou, Florian Schreck

C.-C. Chen et al. Nature **606**, 683–687 (2022)

Next steps:

Outcoupling a continuous atom laser

- Change reservoir trap closer to magic improving cooling
- Use 679nm dimple trap to compensate trap for 3P0
- Coherent transfer of BEC atoms to un-trapped 3P0
- Momentum kick from state transfer outcouples atoms

Junyu He

- CW atom laser by waveguide evaporation?
- Improved BEC purity and flux?
 - Better cooling, reduced trap light shift variation

×X××

mHz superradiance: Continuous active optical clocks

- New machine, smaller, simpler
- Guided ultracold beam continuously loads ultracold atoms into a magnetically and optically shielded (nom ~10k) finesse cavity.
- Able to reach 200G uniform B field for 88Sr operation or operate on 87Sr.

Status:

Now: Steady-state red MOT Next: Transfer atoms to cavity

Sheng Zhou

Continuous passive optical clocks

H. Katori, Appl. Phys. Express 14 072006 (2021) R. Takeuchi et al., Appl. Phys. Express 16 042003 (2023)

Zero dead time passive optical clock

Sumit Sarkar András Gácsbaranyi Scott Wolzak

Use a steady-state red MOT to supply atoms to an array of optical lattice clocks operating on different time scales

New project: Continuous near degenerate ytterbium applications

Chun-Chia Chen Shayne Bennetts

820404 (igClock project) and No 860579 (MoSaiQC project).

(postdoc)

(PhD student)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820404 (iqClock project).

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 860579 (MoSaiQC project).

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101080166 (AQuRA project).

