

Matter-wave collimation to picokelvin energies with scattering length and potential shape control

Alexander Herbst

Leibniz University Hannover

Guided matter-wave interferometry group

Atomic sources

Inertial reference

 \geq

 \succ

Drop/launch mode

[Schlippert et al., arXiv:1909.08524]

The VLBAI facility **C**uantenoptik Drop mode 2T ~0.8 s Rubidium & ytterbium (quantum-degenerate) 17 m Geometric anti-spring system ($f_0 \approx 320$ **Magnetic** mHz) with active stabilization shield Rotation compensation system (cf. Kasevich, Müller groups) Lower atomic source Seismic attenuation Launch mode system 2T ~ 2.8 s

Upper atomic source

Al-zone & magnetic shield

Leibniz

Universität

Hannover

10.5 m CF 200 Al tube

Institut für

Dual-layer mu-metal (octagonal geometry; collaboration with P. Fierlinger, TU München)

TVLBAI workshop, 04.04.2024

Long baseline challenges

Long baselines usually demand large free apertures in-line (~10 cm or more)

- Challenging circumstances for strongly confining magnetic traps (large distance or beam clipping)
- Yb and Sr are non-magnetic
- ➢ Solution: All-optical setups

Matter-wave lensing

- Access to lowest kinetic energies
- Shortcuts of evaporation trajectories → higher flux
- Long initial time-of-flight can be experimentally challenging w/o micro-gravity

- Source systems for molasses cooled ³⁹K, ⁸⁷Rb
- Independent control of ODT beams:
 - Primary beam: 16 W with $w_0 = 24 \mu m$ waist
 - Secondary beam: 16 W with $w_0 = 30 \ \mu m$ waist
- 2D-AOD: 1.5 mm horizontal and vertical modulation stroke

- Source systems for molasses cooled ³⁹K, ⁸⁷Rb
- Independent control of ODT beams:
 - Primary beam: 16 W with $w_0 = 24 \mu m$ waist
 - Secondary beam: 16 W with $w_0 = 30 \ \mu m$ waist
- 2D-AOD: 1.5 mm horizontal and vertical modulation stroke

Time-averaged optical potentials

Without center-position modulation:

With center-position modulation:

- Source systems for molasses cooled ³⁹K, ⁸⁷Rb
- Independent control of ODT beams:
 - Primary beam: 16 W with $w_0 = 24 \mu m$ waist
 - Secondary beam: 16 W with $w_0 = 30 \ \mu m$ waist
- 2D-AOD: 1.5 mm horizontal and vertical modulation stroke

Time-averaged optical potentials

Without center-position modulation:

With center-position modulation:

- Source systems for molasses cooled ³⁹K, ⁸⁷Rb
- Independent control of ODT beams:
 - Primary beam: 16 W with $w_0 = 24 \mu m$ waist
 - Secondary beam: 16 W with $w_0 = 30 \mu m$ waist
- 2D-AOD: 1.5 mm horizontal and vertical modulation stroke

Time-averaged optical potentials

Without center-position modulation:

With center-position modulation:

Leibniz lnstitut für Quantenoptik 10 Universität Hannover **Feshbach resonances** Κ $a(B) = a_{
m bg} igg(1 - \sum_i rac{\Delta B_i}{B - B_{0i}} igg)$ $\cdot 10^{6}$ Atom number र् 4 3 300 (-1, -1)(units of a_0) (0,0)150(0, -1)0 -150-300204060 80 100120140160180Magnetic field (G)

Evaporation optimization

Evaporative cooling dynamics:

Evaporation optimization

Performance comparison

Current setup limited by MOT loading time

Combination of ODTs with TAPs and tunable interactions allows to match the performance of chip traps

Performance comparison

Current setup limited by MOT loading time

Combination of ODTs with TAPs and tunable interactions allows to match the performance of chip traps

Performance comparison

Current setup limited by MOT loading time

Combination of ODTs with TAPs and tunable interactions allows to match the performance of chip traps

Similar results achieved with ⁸⁷Rb by further increasing the trap frequencies, using smaller beam waists:

$$\Gamma_{\rm ev} \propto \frac{N\bar{\omega}^3}{T} \qquad \qquad R \propto \frac{T^2}{N\bar{\omega}^3}$$

[Hetzel, Dissertation, 2023, Leibniz University Hannover]

All-optical matter-wave lens

[Albers et al., Commun. Phys. 5, 60 (2022)] ⓒ

Leibniz Institut für Quantenoptik 2 Universität 0 Hannover 100 counts 100 velocity distribution [mm/s] 75 50 · 25 -0 --25 -50 -75 -100 --100 -50 50 ò 100 position distribution [um] 50 10 40 مر [mm/s] а, [µm] о, 20 -10 ò 10 20 30 10 20 0 30 time [ms] time [ms]

All-optical matter-wave lens

Leibniz

TVLBAI workshop, 04.04.2024

17

All-optical matter-wave lens

TVLBAI workshop, 04.04.2024

Leibniz

Universität

2

0 100

Institut für

Matter-wave lens with ³⁹K

Expansion fundamentally bound by uncertainty principle:

$$\Delta x \cdot \Delta p \geq rac{\hbar}{2}$$

- Initial Δx depends on trap geometry/frequencies
- Repulsive interactions increase momentum:

$$i\hbarrac{\partial\Psi(ec{r},t)}{\partial t}=igg(-rac{\hbar^2}{2m}\Delta+V(ec{r})+g|\Psi(ec{r},t)|^2igg)\Psi(ec{r},t)$$

Thomas-Fermi approximation ($a \ge 50 - 150 a_0$):

- neglects kinetic energy term
- Thomas-Fermi distribution

Variational approach (a < 50 - 150 a_0):

- includes kinetic energy term
- Gaussian distribution

Matter-wave lens with ³⁹K

- Application of same lensing scheme with ³⁹K
- Dedicated tuning of scattering length allows to reduce mean-field energy prior to release

Leibniz

Universität

Hannover

Institut für

Cuantenoptik

Outlook

- Combination of continuous matter-wave lens with pulsed delta-kick collimation after release
- Co-moving ODT (via AOD) allows for up to 30 ms of free-fall

3D simulations:

- For ³⁹K below 20 pK with tunable interactions
- For ⁸⁷Rb below 100 pK w/o tunable interactions
- Directly applicable to Sr and Yb

[Herbst et al., arXiv:2310.04383 (2024)]

TVLBAI workshop, 04.04.2024

Thank you for your attention!

10

GEFÖRDERT VOM

und Forschung

This work is funded by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany under contract number 13N14875. The authors further acknowledge support by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM2041 (PRIMUS-IV).