

Optimal Floquet Engineering for Large Scale Interferomete

Alexandre Gauguet

2nd Terrestrial Very-Long-Baseline Atom Interferometry Workshop - April 3, 2024

Light-pulse Atom Interferometry Large Momentum Transfer (LMT)

Coherent transfer of momentum from light-fields $\hbar k_{eff}$ to the atomic wave function.

C.J Bordé, Matter-Wave Interferometers: a synthetic approach, (1997)

Light-pulse Atom Interferometry Large Momentum Transfer (LMT)

TVLBAI - roadmap:

Sensor Technology	State-of-the-art	Target	Enhancement
LMT atom optics	$10^2 \hbar k$	$10^4 \hbar k$	100
Matter-wave lensing	$50\mathrm{pK}$	5 pK	—
Laser Power	$10\mathrm{W}$	$100\mathrm{W}$	_
Spin squeezing	$20 \mathrm{dB} (\mathrm{Rb}), 0 \mathrm{dB} (\mathrm{Sr})$	$20\mathrm{dB}~(\mathrm{Sr})$	10
Atom flux	$10^5 \text{ atoms/s (Rb)}$	(10^7 atoms/s) Sr)	10
Baseline length	$10\mathrm{m}$	1000 m	100

« We believe that there are no serious barriers to realization of momentum transfers greater than $10\hbar k$. »

J.M. McGuirk et al. Large Area Light-Pulse Atom interferometry PRL (2000)

A quick tour of LMT beam splitters Requirements for Large Scale Interferometers

TVLBAI - roadmap:

Sensor Technology	State-of-the-art	Target	Enhancement
LMT atom optics	$10^2 \hbar k$	$10^4 \hbar k$	100
Matter-wave lensing	$50\mathrm{pK}$	5 pK	—
Laser Power	$10\mathrm{W}$	$100\mathrm{W}$	_
Spin squeezing	$20 \mathrm{dB} (\mathrm{Rb}), 0 \mathrm{dB} (\mathrm{Sr})$	$20\mathrm{dB}~(\mathrm{Sr})$	10
Atom flux	$10^5 \text{ atoms/s (Rb)}$	(10^7 atoms/s) Sr)	10
Baseline length	$10\mathrm{m}$	1000 m	100

LMT-interferometer ($\hbar k$)

High efficiency & High rate

Light-pulse Atom Interferometry Large Momentum Transfer

Single photon transition

- 2-level system optical transition
- Metastable excited state
- Resonant transition -> Spont. Emission
- Rabi frequency $\Omega \sim MHz$
- Demonstrated $400\hbar k$
- Very high rate transfer: $\sim 0.1 \ \mu s/\hbar k$

Wilkason et al., Phys. Rev. Lett., **129**, 183202 (2022)

Optical lattice Bloch-Type acceleration

Gebbe et al., Nat Commun, **12**, 2544 (2021)

- multi-photon transitions lattice states
- o Ground state
- Rabi frequency $\Omega \sim 10 \mathrm{kHz}$
- Demonstrated > $400\hbar k$
- Rate transfer: $\sim 6 \,\mu s/\hbar k$

Cladé et al., Phys. Rev. Lett. **102**, 240402 (2009) McDonald et al., Phys. Rev. A **88**, 053620 (2013) Pagel et al., Phys. Rev. A **102** 053312 (2020)

Two-photon Raman transition

- Effective 2-level system, 2 photons transition
- Ground states
- + Rabi frequency $\Omega \sim 100 kHz$
- Demonstrated $30\hbar k$
- High rate transfer: ~ 2.5 μs/ħk
 McGuirk et al., Phys. Rev. Lett., 85,4 4981(2015)
 Kotru et al., Phys. Rev. Lett., 115, 103001(2015)

Optical lattice Sequence of Bragg pulses

- multi-photon transitions lattice states
- Ground state
- Rabi frequency $\Omega \sim 100 kHz$
- Demonstrated $600\hbar k$
- High rate transfer: $\sim 2.5 \ \mu s/\hbar k$

Chiow et al., Phys. Rev. Lett., **107**, 130403 (2011) Plotkin-Swing et al., Phys. Rev. Lett., **121**, 133201 (2018) Rodzinka et al . <u>arXiv:2403.14337</u>

Light-pulse Atom Interferometry Large Momentum Transfer

- 2-level system optical transition
- Metastable excited state
- Resonant transition -> Spont. Emission
- Rabi frequency $\Omega \sim MHz$
- Demonstrated 400*ħk*
- Very high rate transfer: $\sim 0.1 \ \mu s/\hbar k$

Optical lattice Bloch-Type acceleration

Gebbe et al., Nat Commun, **12**, 2544 (2021)

- multi-photon transitions lattice states
- **& Ground state**
- Rabi frequency $\Omega \sim 10 \mathrm{kHz}$
- Demonstrated $> 400\hbar k$
- Rate transfer: $\sim 6 \,\mu s/\hbar k$

Cladé et al., Phys. Rev. Lett. **102**, 240402 (2009) McDonald et al., Phys. Rev. A 88, 053620 (2013) Pagel et al., Phys. Rev. A **102** 053312 (2020)

Two-photon Raman transition

- Effective 2-level system, 2 photons transition
- Ground states
- Rabi frequency $\Omega \sim 100 \text{kHz}$
- Demonstrated 30ħk
- High rate transfer: $\sim 2.5 \ \mu s/\hbar k$

Optical lattice Sequence of Bragg pulses

- multi-photon transitions lattice states
- Ground state
- Rabi frequency $\Omega \sim 100 \mathrm{kHz}$
- Demonstrated $600\hbar k$
- High rate transfer: $\sim 2.5 \ \mu s/\hbar k$

Chiow et al., Phys. Rev. Lett., **107**, 130403 (2011) Plotkin-Swing et al., Phys. Rev. Lett., **121**, 133201 (2018) Rodzinka et al . <u>arXiv:2403.14337</u>

Atom Interferometer Experimental setup

Vertical optical lattice:

- retroreflected configuration
- lattice depth $\sim 50E_R$
- detuning with excited state $\sim 40 \text{ GHz}$
- amplitude and phase of the lattice with AOM
- anti-g chirp \rightarrow free fall frame

LMT: Bragg pulse seque Independent pulses: gaugeian nulez

Beam splitter made with multiple

Chiow et al. Phys. Rev. Lett. 107, 130403 (2011)

- Better control of non-adiabatic losses \bullet
- Less spontaneous emission per $\hbar k$ lacksquare

LMT: Bragg pulse sequence Independent pulses: gaussian pulse

LMT: Bragg pulse sequence **Coherent Enhanced pulses**

Short pulses and fast train pulses Non-adiabatic losses = coherent losses

Small spatial separation $\Lambda = 2v_R t_c \ll \xi =$

Losses interfere destructively:

$$P_{|N-2\rangle} = 2\epsilon^2 (1 + \cos(\pi + 4\omega_R))$$

98% pulse-to-pulse efficiency

- Higher efficiency ?
 - Faster transfer ?

Stroboscopic stabilization in the accelerated frame Optical Lattice with periodic driving

- Periodic driving in the accelerating frame
- Periodic hamiltonian $H(t_0) = H(t_0 + \tau)$

Floquet Formalism

Stroboscopic stabilization in the accelerated frame **Floquet's formalism**

 $|w_n(t)\rangle = |u_n(t)\rangle e^{i\theta_n}$ with $|u_n(t+\tau)\rangle = |u_n(t)\rangle$ Diagonalization of the one-period propagator = Floquet states

Initial state
$$|\psi(0)\rangle = \sum c_n |u_n\rangle \longrightarrow |\psi(t)\rangle = \sum c_n |u_n(t)\rangle e^{i\theta_n}$$

- Periodic driving in the accelerating frame
- Periodic hamiltonian $H(t_0) = H(t_0 + \tau)$

Floquet Formalism

Stroboscopic stabilization in the accelerated frame Stabilization in the accelerated frame

Floquet states can be defined for any periodic sequence

State preparation $|p_0\rangle \rightarrow |w_0\rangle$ **Quantum Optimal Control Theory**

We choose the Floquet state $|w_0\rangle$ with the largest projection on $|p_0\rangle$

Hamiltonian with control: amplitude $\Omega(t)$ and frequency $\omega_{a}(t)$

Find the control fields $\{\Omega(t), \omega_a(t)\}$, maximizing the figure of merit: $|\langle w_0 | \psi(t_f) \rangle|^2$

Optimization procedure with QOCT and implemented with Gradient based method (here GRAPE)

Ansel et al. arXiv: 2403.00532

The complexity of Optimal Control LMT is encapsulated into the Floquet state

Robust preparation Initial statistical mixture

A floquet state for each momentum of the distribution

$$|p_0\rangle \rightarrow |w_0(p_0)\rangle$$

Simultaneous control for $|w_0(p_0)\rangle = \text{Robust agains}$

Rodzinka et al. arXiv:2403.14337

Robust preparation Initial statistical mixture

A floquet state for each momentum of the distribution

$$|p_0\rangle \rightarrow |w_0(p_0)\rangle$$

Simultaneous control for $|w_0(p_0)\rangle = \text{Robust agains}$

Figure of merit
$$F_1 = \int_{-\infty}^{+\infty} |\langle \psi(\tau_c) | w_0(p_0) \rangle|^2 f(p_0)$$

Rodzinka et al. arXiv:2403.14337

Robust control up to 0.35 hk

Floquet acceleration Normalized atom number in the fully accelerated state

Floquet acceleration Normalized atom number in the fully accelerated state

Floquet acceleration Simulation to reach 10000 *ħk*

ation Jency n an cell rated frame

Optimal solution results in similar efficiency

For infinitely deep lattices, the Floquet state converges to the lattice ground state.

Comparison with :

Rahman et al. arXiv:2308.04134 Fitzek et al. arXiv:2306.09399

LMT-Beam splitters Pre-acceleration

Floquet states potentially have a large momentum expansion. This can interfere with the other arm during acceleration. Need for a pre-acceleration step.

Total Momentum separation = $(1 + 11 + N) \times 2\hbar k$

 $\pi/2$ - pulse quasi-Bragg regime 11 CEBS pulses (40 μ s) Floquet acceleration: N pulses

LMT - Interferometer 600*hk* - interferometer

Time

Interferometer signal
$$\frac{N_1}{N_1 + N_2} = A \left(1 + V \sin(\Delta \phi) \right)$$

Lattice phase imprinted on the atom at each momentum transfer

Phase-shift scaling with lattice phase $\Delta \phi = K \times \varphi_l$

Scan the fringes by incrementing φ_l

LMT - Interferometer 600*ħk* - interferometer

Normalized population

- LMT Interferometer $600\hbar k$ imit = detection volume
- Visibility: $18\% \pm 4\%$

Imit = spontaneous emission & pre-acceleration efficiency

Conclusion & Discussion

- Floquet approach for sequential and continuous acceleration.
- New QOCT implementation for navigating large Hilbert spaces.
- Fast and very efficient LMT.
- Demonstrates 600 hk atom interferometer.

We believe that there are no serious barriers to realization of momentum transfers greater than $1000\hbar k$.

Conclusion & Discussion

- Improving the beam splitting and pre-acc
- Robust against lattice depth fluctuations
 - Pulse Sequence Engineering
 - More powerful and stable laser
- Metrology of LMT interferometer
 - QOCT for Phase shifts robustness
 - Phase shift measurements

acc ons

T. Rodzinka	L. Calmels				
(PhD)	(PhD)				
S.	Beldjoudi	Ashley Bég			
	(PhD)	(PhD)			

Baptiste Allard (Ass. Prof.) guin

D. Guéry-(Prof

The Machine

Quasi-Bragg diffraction High-order diffraction and Brute-Force Optimal Control

Multiple loss path

Gaussian pulse

Béguin et al., Phys. Rev. A, **105**, 03302 (2022)

non-adiabatic vs velocity selection

Quasi-Bragg diffraction High-order diffraction and Brute-Force Optimal Control

Pulse shape based on Optimal Control Theory

Saywell et al. Nat Commun 14, 7626 (2023).

LMT: Bragg pulse sequence Independent pulses: OCT pulses

Floquet state in phase space A simple parameterization of $|w_0\rangle$

 $p/\hbar k$ $\sigma \Delta \omega / \omega_r^{\mathbf{q}} \gamma$

a

Phase dispersion QOCT allows non-dispersive phase

Phase shift vs Lattice depth Fidelity and phase of the accelerated state

 $20\hbar k$ momentum transfer:

$$\frac{\Delta\gamma}{\gamma} = 10^{-6} \to \sim 1 \text{ mrad/1}$$

Can be improved with sequence engineering

