Single-photon large-momentum-transfer atom interferometry with application to determining the fine-structure constant

Outline

- Why measure the fine-structure constant, α ?
- Proposal: measurement by (single-photon) atom interferometry with Sr (method being developed in MAGIS-100 and AION projects)
- Conclusions
- Preprint: <http://arxiv.org/abs/2403.10225>

Jesse S. Schelfhout, T. Hird, K. Hughes & Chris Foot

Fine-structure constant (α)

• Coupling strength for electromagnetic interaction

 m_X = mass of atomic species, e. g. m_{Sr}

Fine-structure constant (α) – current experiments

Testing the Standard Model of Particle Physics

• Electron magnetic moment. X. Fan,… G. Gabrielse. PRL **130**, 071801 (2023)

$$
-\frac{\mu_e}{\mu_B} = \frac{g_e}{2} = 1 + C_2 \left(\frac{\alpha}{\pi}\right) + C_4 \left(\frac{\alpha}{\pi}\right)^2 + C_6 \left(\frac{\alpha}{\pi}\right)^3 + C_8 \left(\frac{\alpha}{\pi}\right)^4 + C_{10} \left(\frac{\alpha}{\pi}\right)^5 + C_{10} \left(\frac{\alpha}{\pi}\right)^6
$$

 $... + a_{\mu\tau} + a_{\text{hadronic}} + a_{\text{weak}}$

- Standard Model comparison limited by $>$ 50 discrepancy in α
- Improvement of $g_e 2$ would make it competitive with muon g -2 experiment's sensitivity to beyond SM effects.
- Other precision measurements can also be used α to test the SM, e.g. G. Adkins et al., Phys. Rep. **975**, 1 (2022)

Atom interferometry: uncertainties in determining α

$$
\frac{\Delta \alpha}{\alpha} \approx \frac{1}{2} \sqrt{\left(\frac{\Delta R_{\infty}}{R_{\infty}}\right)^{2} + \left(\frac{\Delta A_{r}(e)}{A_{r}(e)}\right)^{2} + \left(\frac{\Delta A_{r}(Sr)}{A_{r}(Sr)}\right)^{2} + \left(\frac{\Delta m(Sr)}{m(Sr)}\right)^{2}}
$$
\n
$$
\frac{\Delta R_{\infty}}{\frac{\Delta R_{\infty}}{R_{\infty}} = 2 \times 10^{-12}
$$
\n
$$
\frac{\Delta A_{r}(e)}{A_{r}(e)} = 3 \times 10^{-11}
$$
\n
$$
\frac{\Delta A_{r}(Sr)}{A_{r}(Sr)} = 7 \times 10^{-11}
$$
\n
$$
\frac{\Delta m(Rb)}{m(Rb)} = 15 \times 10^{-11}
$$
\n
$$
\text{e assume that mass ratios can be improved}
$$
\n
$$
\text{Current experiment}
$$

- Δa α $= 8 \times 10^{-11}$ is the uncertainty currently (LKB, Paris 2020)
- $\Delta \alpha$ α $\approx 1 \times 10^{-11}$ would require $\frac{\Delta m(Sr)}{m(Sr)} \leq 2 \times 10^{-11}$, and improved mass ratios.
- N.B. Rest mass difference between ground and excited states: $\frac{m(Sr^{-3}P_0)}{m(Sr^{-1}S)}$ $m(\overline{S}r^{-1}S_0$ $-1 \approx 2 \times 10^{-11}$

E. Tiesinga ⁵ ..., Rev. Mod. Phys. **93**, 025010 (2021); R. Rana..., PRA **86**, 050502 (2012); M. Wang..., CPC **45**, 030003 (2021)

Ramsey-Bordé interferometer(s)

- Four $\pi/2$ pulses = two oppositely directed pairs
- Originally developed to separate frequency detuning and Doppler dephasing for optical Ramsey fringes

 \mathcal{X}

- Bordé realised its use as a recoil-sensitive atom interferometer
- Two interferometers close for: $t_2 t_1 = T = t_4 t_3$
- Differential phase: $\Delta \Phi =$ $2\hbar k^2$ T $\frac{1}{m} = 4\omega_{\text{rec}}T$

C. Bordé et al., PRA **30**, 1836 (1984); C.Bordé, Phys. Lett. A **140**, 10 (1989); J.Bergquist et al., PRL **38**, 159 (1977).

 π

t1

 \bar{t}

 π

t2

2

2

 π

2

t4

 π

2

t3

Increasing sensitivity – LMT

- Large momentum transfer (LMT) by a sequence of π pulses in alternating directions to increase momentum separation.
- LMT beam-splitter from pulses between initial/final pairs of $\pi/2$ pulses. For recoil frequency measurement we address only one of the arms
	- $\Delta \phi$ scales as recoil-energy difference
	- $E_{\text{rec}} = \hbar \omega_{\text{rec}} = m v_{\text{rec}}^2 / 2$
- The two interferometers can be deflected (apart) using LMT in the middle region

Recoil measurement scheme

Use Large Momentum Transfer (LMT) pulses to: 1. Increase recoil-energy separation, then cancel it (otherwise two interferometers do not both close) 2. Deflect the interferometers in opposite directions 3. Close the interferometers

• Differential phase:

$$
\Delta \Phi = \frac{(N+1)(N+2M+2)\hbar k^{2}(T-N\Delta t)}{m} - \frac{N(N+1)(N+2)\hbar k^{2}\Delta t}{3m}
$$
\n
$$
\geq (N+1)\left(2M(N+1)+\frac{(N+2)(2N+3)}{3}\right)\frac{\hbar k^{2}\Delta t}{m} - M\hbar k
$$
\n
$$
\Delta t - \text{repetition time of pulses}
$$
\n
$$
t_{2} - t_{1} = T = t_{4} - t_{3}
$$
\n
$$
(2N+1)\Delta t \leq T \text{ due to pulse timing constraints}
$$

 $+N\hbar k$

 $+M\hbar k$

 $+N\hbar k$

Intermediate-scale atom interferometers

- Long coherence times of the optical clock transitions
	- $\tau \sim 2$ min for ⁸⁷Sr
- Single-photon transitions avoids some issues for counterpropagating pulses for Raman transitions/Bragg pulses
- Intermediate scale (\sim 10 m) prototypes under development for future VLBAI (see other talks).

Gravity gradient mitigation – asymmetric launch

• Gravity gradient phase is a large systematic when scaling up

$$
\Delta \phi_{\gamma} = \frac{m\gamma A}{\hbar} \Delta z
$$

$$
A = \int (z_l(t) - z_u(t)) dt
$$

where A is the space-time area enclosed (between two arms)

- $\gamma = G_{zz} = \frac{dg}{dz}$ \overline{dz} , the gradient of the gravitational acceleration, or any (spatial) gradient of acceleration.
- Strategy as in Zhong et al., (Berkeley):
	- Offset two Ramsey-Bordé interferometers
	- Compare top interferometer of (initially) lower set with bottom one of upper set.
	- Acceleration gradients along vertical cancel.

Gravity gradient mitigation – asymmetric launch

• Gravity gradient phase \rightarrow large systematic

$$
\Delta\phi_{\gamma}=\frac{m\gamma A}{\hbar}\Delta z
$$

- Compare top interferometer of (initially) lower set with bottom one of upper set
- Differential phase (for our scheme):

Set to 0 and solve for asymmetric launch, parameters
\n
$$
\Delta \Phi_{\gamma} \approx -\frac{(N+1)k\gamma}{180} (180(T - N\Delta t_{\text{LMT}})(t_3 - t_1)\Delta h + 45(T - N\Delta t_{\text{LMT}})(t_3 - t_1)\Delta u(t_1 + t_2 + t_3 + t_4)
$$
\n
$$
+\frac{15\hbar k(T - N\Delta t_{\text{LMT}})}{m} [2(N + 2M + 2)T^2 - T(4N + 2M + 5)N\Delta t_{\text{LMT}} + 6(t_3 - t_2)(t_3 - t_1)
$$
\n
$$
+6M(t_3 - t_m)(t_4 - (t_m + (M - 1)\Delta \tau_{\text{LMT}})) + 6M(t_4 - t_m)(t_3 - (t_m + (M - 1)\Delta \tau_{\text{LMT}}))
$$
\n
$$
+(3N^2 + 2NM + 6N + 2M + 3)N\Delta t_{\text{LMT}}^2 + 2M(M - 1)(2M - 1)\Delta \tau_{\text{LMT}}^2)
$$
\n
$$
-\frac{N(N+2)(3N^2 + 6N + 1)\hbar k \Delta t_{\text{LMT}}^3}{m}\bigg)
$$

 Λh

 \oint Δz

Prospects for intermediate-scale atom interferometers

Prospects for intermediate-scale atom interferometers

$$
L = 3m, \ \Delta\Phi = 1.4 \times 10^8 \text{ rad } \Rightarrow \frac{\Delta m(Sr)}{m(Sr)} < 1 \times 10^{-11} \ \text{(at 1 mrad resolution)} \ \left(\Delta t = 1 \text{ ms}\right)
$$

TABLE IV. Optimal parameters for X configuration with Sr at different values of L

\hat{L} (m)			$h - 0.2 \,\mathrm{m} \; (\mathrm{mm})$	$u \,(\text{m s})$	(m) z_0	$\Delta\Phi$ (rad)
	24	54	5.403	4.79312	$0.7355^{\rm a}$	4.6×10^{6}
1.5	42		41.107	5.71647	$1.2165^{\rm a}$	2.0×10^7
	56	$108\,$	12.499	6.72874	$1.6995^{\rm a}$	4.9×10^7
			Ω	7.20202	2.10 s^2	
	84	140	22.604	8.18404	$2.6915^{\rm a}$	$.4 \times 10^8$

L = 3m, *N* = 84 pulses, *M* = 140 pulses

Total number of pulses = $4(N+1)+M = 480$

N=M=0 is the standard Ramsey-Borde interferometer

Possible advantages of Sr scheme over Rb or Cs?

Conclusions – atom interferometry with application to determining α

- Sr interferometry could provide another determination of α
	- 3m high atom interferometer would improve α to level for testing the Standard Model (with other measurements)
	- Limited by current knowledge of relative mass $A_r(Sr)$ [which can be improved?]
	- Same scheme works for other neutral atoms with optical clock transitions, e.g. Yb
- Systematic uncertainties ?
	- All atom interferometry techniques require high quality laser beams: shifts from beam curvature, Gouy phase etc.
	- Single-photon interferometry avoids light shifts in Raman transitions and reduces sensitivity to vibrations.
	- Single-photon interferometry may have other systematics?
	- Atom Interferometry: Metrology & Systematics (tomorrow)
- Open question: Implementation of velocity selective pulses resonant at two different velocities? (to be modelled)

Strontium Laser Lab, University of Oxford, AION project.

Science & Technology Funding Council

Prof. Chris Foot Jesse Schelfhout

Dr Tom Hird Dr Kenneth Hughes

Thanks to Jesse for the work in <http://arxiv.org/abs/2403.10225>

Other members of AION @Oxford:

> Ian Shipsey Adam Lowe Daniela Bortoletto John March-Russell Dan Weatherill Dan Wood Charu Mishra

Funded by Quantum Technology for Fundamental Physics program in the UK (STFC).

International partnership with the **MAGIS-100 Collaboration and The Fermi National Laboratory, US**

Suppl. notes: How M enters phase shift

- Use LMT to:
- Increase recoil-energy separation, then cancel it (otherwise two interferometers do not both close)
- 2. Deflect the interferometers in opposite directions
- 3. Close the interferometers
- Differential phase is

$$
\Delta \Phi = \frac{(N+1)(N+2M+2)\hbar k^{2}(T-N\Delta t)}{N(N+1)(N+2)\hbar k^{2}\Delta t}
$$

 $(N+1)(N+2M+2)$ scaling from:

The **maximum difference in recoil frequencies** (between the final π/2-pulses):

1. For the upward interferometer, is proportional to $(M+1)^2 - (N+M+2)^2 = -(N+1)(N+2M+3)$

 $3m$

- 2. For the downward interferometer, is proportional to **(-N-M-1)² – (-M)² = (N+1)(N+2M+1)**
- 3.The difference is, thus, proportional to **2(N+1)(N+2M+2)**

 \boldsymbol{m}

The terms that scale like Δt come from the momentum transfer spread over time.

Supplementary notes: muon *g*-2

- The muon g -2 tension is the \sim 4 σ discrepancy between the experimental value and the theoretical value according to some determinations of the lowest-order hadronic vacuum polarisation contribution (see [the latest review by the Particle Data Group on](https://pdg.lbl.gov/2023/reviews/rpp2023-rev-g-2-muon-anom-mag-moment.pdf) the topic for further details).
- A factor of 2.2 improvement for the electron *g*-2 theoretical value would probe (beyond the) Standard Model contributions at the level of the muon *g*-2 discrepancy.
- This assumes whatever new physics might be proposed affects all leptons (equally) and the larger rest mass of the muon enhances its sensitivity (since higher energy [leads to higher probability of virtual particle creation\)](https://link.springer.com/article/10.1007/JHEP11(2012)113) - see, e.g., Testing new physics with the electron *g* − 2 | Journal of High Energy Physics (springer.com), pp 7-8.