Managing Bloch Oscillation Phases for Large-Momentum-Transfer Atom Interferometry

Subhadeep Gupta, University of Washington, Seattle Terrestrial VLBAI Workshop, Imperial College, 3rd April 2024

Atom Interferometry @UW with Yb

Managing Bloch Oscillation Phases for Large-Momentum-Transfer Atom Interferometry

Bloch Oscillations highly efficient LMT tool

Intensity noise turns into phase noise. Challenge for scaling to 1000 recoil for next generation BO-enhanced AI.

Excited-band BO as an alternate possibility for LMT.

Observation of ground band BO phases upto 100 recoils, compare with theory.

Rahman et al, arXiv:2308.04134 (2023) To appear in Phys Rev Research

Large Momentum Transfer for precision AI

Measurement Precision scales as $\delta \Phi / \Phi \sim \delta \Phi$ / (space-time area)

LMT photon recoils eg. $\Phi_1 - \Phi_2 \sim mgX^*T \sim g(n)k^*T^2$

~ space-time area

Can increase T with fountain, drop tower, terrestrial VLBAI, rockets, in space

Can increase n with Bragg Pulses Bloch oscillations Other techniques (eg Floquet)

Three-Path Atom Interferometry with Large Momentum Separation Phase Stability, High Visibility for > 100 photon recoils

n = # recoils betw 1 and 3 increased by sequences of 3rd order Bragg pulses

Stability acquired from:

- Interferometer symmetry
- Atom-optics pulse control

Related large LMT works: Hannover, Stanford, Berkeley, Toulouse, others

Ben Plotkin-Swing et al. PRL **121**, 133201 (2018)

High *n* performance limited by efficiency and photon shot noise

Visibility = 100% x (Max-Min)/(Max+Min)

Amp ~ (Eff)^{recoils} Eff ~ 98.4%/recoil

Suppressing Diffraction (lattice-induced) Phases

Ben Plotkin-Swing et al. PRL **121**, 133201 (2018)

Bloch-band picture of Bragg Diffraction

Identify Ω_R as Rabi frequency and Ω_D with an average energy shift during diffraction

Bragg Diffraction and Bloch Oscillations

$$P_{LZ} = \exp\left(-\pi \frac{\Omega_{BG}^2}{4bka}\right)$$
 where $a = \dot{\delta}/2k$

Highly efficient large momentum transfer: ~99.9%/recoil in b = 0

Bloch Oscillation Atom Optics Tool

With Yb BECs:

- Bragg (N_B=3) efficiency: 98.5% per $\hbar k$
- Band 0 BO efficiency: 99.9% per $\hbar k$
- Band 2 BO efficiency: >99.4% per $\hbar k$

L. Morel et al. (LKB), Determination of the fine-structure constant with an accuracy of 81 parts per trillion, Nature 588, (2020).

M. Gebbe et al. (Hannover), Twin-lattice atom interferometry, Nature Communications 12, 2544 (2021). Z. Pagel, et al. (Berkeley), Symmetric Bloch oscillations of matter waves, Physical Review A 102, 053312 (2020).

Ground- and Excited-Band BO

Ground-band BO

Band 2 BO

"Magic" Depths in Excited-Band BOs

Phase and phase noise during transport process as intensity (U_0) inevitably fluctuates

Excited-Band Atom Optics in a Mach-Zender AI

Katie McAlpine et al, PRA 101, 023614 (2020)

Large Momentum Transfer with excited-band BOs

Peak eff. 99.4% /recoil

Katie McAlpine et al, PRA **101**, 023614 (2020)

 $\hat{H} = \frac{\hat{p}^2}{2m} + U_0 \cos^2\left(\pi \frac{\hat{y}}{d}\right) - \frac{h}{T_{\rm BO}}\frac{\hat{y}}{d}$

LMT of 100 *ħk*

 $U_0/E_r = 25.5$ LMT of 200 *ħk*

For 1000 $\hbar k$, 100mrad requires intensity stability of < 3 x 10⁻⁵

Also see:

F. Fitzek et al (Hannover), arXiv:2306.09399 (2023)

Managing Bloch Oscillation Phases for Large-Momentum-Transfer Atom Interferometry

Bloch Oscillations highly efficient LMT tool

Intensity noise turns into phase noise. Challenge for scaling to 1000 recoil for next generation BO-enhanced AI.

Excited-band BO as an alternate possibility for LMT.

Observation of ground band BO phases upto 100 recoils, compare with theory.

Potential applications of ground and excited-band BOs in VLBAI

Magic Trapped AI: Gravimetry and equivalence principle test

BO Phases with multi-path Stuckelberg AI

Rahman et al, arXiv:2308.04134 (2023) To appear in Phys Rev Research

UW Ultracold Atoms and Quantum Gases Group

Yb Atom Interferometry Tahiyat Rahman Emmett Hough Harini Ravi Dan Gochnauer (PhD 20) Katie McAlpine (PhD 19) Ben Plotkin-Swing (PhD 18) DG

Quantum Dynamics and Simulation Nicolas Williams Lynnx DG

Funding:

