

PRIFYSGOL

Synergies with ground based laser interferometers

Stephen Fairhurst

Fourth Observing Run (O4)

∽√ GraceDB Public Alerts ▼ Latest Search Documentation Login

Please log in to view full database contents.

https://gracedb.ligo.org/

•••••

O4 Significant Detection Candidates: 81 (92 Total - 11 Retracted)

O4 Low Significance Detection Candidates: 1612 (Total)

Show All Public Events

Page 1 of 7. next last »

SORT: EVENT ID (A-Z)

Event ID	Possible Source (Probability)	Significant	UTC	GCN	Location	FAR	Comments
S240109a	BBH (99%)	Yes	Jan. 9, 2024 05:04:31 UTC	GCN Circular Query Notices VOE		1 per 4.3136 years	
S240107b	BBH (97%), Terrestrial (3%)	Yes	Jan. 7, 2024 01:32:15 UTC	GCN Circular Query Notices VOE		1.8411 per year	
S240104bl	BBH (>99%)	Yes	Jan. 4, 2024 16:49:32 UTC	GCN Circular Query Notices VOE		1 per 8.9137e+08 years	
S231231ag	BBH (>99%)	Yes	Dec. 31, 2023 15:40:16 UTC	GCN Circular Query Notices VOE	a de la construcción de la const	1 per 3.7932e+06 years	
S231226av	BBH (>99%)	Yes	Dec. 26, 2023 10:15:20 UTC	GCN Circular Query Notices VOE		1 per 2.8446e+42 years	

Results from O3: Populations

Features in the mass spectrum Over-density between $8M_{\odot}$ and $10M_{\odot}$ and around $26M_{\odot}$.

- A weaker feature present at around 14M_☉
- Absence of mergers with chirp masses between 10M_☉ and 12M_☉.

From Abbott et al, arXiv: <u>2111.03634</u> First discussed in Tiwari and Fairhurst, arXiv: <u>2011.04502</u>

Results from O3: Unexpected Events

GW190814

GW190521

Challenge: Accurate measurement of mass and redshift

- Example: GW190521
- Distance uncertain to a factor of 2 largely due to degeneracy with orientation.
- Corresponding redshift uncertainty: 0.5 < z < 1.1.</p>
- GW measurements give M(1 + z), so distance uncertainty contributes to mass uncertainty

Abbott et al, arXiv: 2009.01075

Challenge: Accurate measurement of mass and redshift

- Example: GW190521
- Distance uncertain to a factor of 2 largely due to degeneracy with orientation.
- Corresponding redshift uncertainty: 0.5 < z < 1.1.</p>
- GW measurements give M(1 + z), so distance uncertainty contributes to mass uncertainty
- More pronounced at high z

Abbott et al, arXiv: 2009.01075

Einstein Telescope and Cosmic Explorer

Maggiore et al. <u>https://arxiv.org/abs/1912.02622</u>

Evans et al. https://arxiv.org/abs/2109.09882

Next Generation GW Observatory Science Book https://gwic.ligo.org/3Gsubcomm/documents.html

Sensitivity

- Both Cosmic Explorer and Einstein Telescope target a 10x sensitivity improvement and a broader frequency range
- Achieved through longer arms, improved seismic isolation

Science Reach

Sensitivity to Black Hole and Neutron Star mergers

From Cosmic Explorer white paper: Evans et al, <u>arXiv:2306.13745</u>

Evolution of detector sensitivity

Seed black holes

- Quasars observed at redshift z > 7 [less than 1 billion years after the big bang] are powered by black holes with mass > 10⁹ M_☉
- Likely population of seed black holes at high redshifts that grow through accretion and mergers to form supermassive black holes
- Light seeds will be observable to next-generation GW observatory
- Challenging to accurately measure masses and redshift

From Valiante et al <u>https://arxiv.org/abs/2010.15096</u>

GW multipoles

- Break distance-orientation degeneracy by measuring additional GW multipoles
- Example: 120-60 M_☉ BBH at z=14

From Fairhurst et al, arXiv: <u>2310.18158</u> ¹²

Observability of GW multipoles

From Fairhurst et al, arXiv: <u>2310.18158</u> ¹³

Observing high-mass, high-z BBH

- Can extract masses and redshift of black holes from GW signals
- Observation would provide evidence for `light seeds'
- Can also investigate location of BH mass gap

From Fairhurst et al, arXiv: 2310.18158

Challenges in Observing high mass BBH

- Example: 120-60 M_☉ BBH at z=21
- Can't accurately measure mass/redshift. Could be
 - (2, 2) mode of 120-60 M_☉ BBH at z=21 or
 - (3,3) mode of 600-300 M_{\odot} BBH at z=5

Challenges in Observing high mass BBH

- Example: 120-60 M_☉ BBH at z=21
- Can't accurately measure mass/redshift. Could be
 - (2, 2) mode of 120-60 M_☉ BBH at z=21 or
 - (3,3) mode of 600-300 M_{\odot} BBH at z=5

Challenges in Observing high mass BBH

- Example: 120-60 M_☉ BBH at z=21
- Can't accurately measure mass/redshift. Could be
 - (2, 2) mode of 120-60 M_☉ BBH at z=21 or
 - (3,3) mode of 600-300 M_{\odot} BBH at z=5

Conclusions

- LIGO-Virgo-KAGRA are unveiling the population of neutron stars and black holes
- Next generation gravitationalwave observatories are entering conceptual design phase
- Observatories will provide a unique view of the universe
- Observation of high-mass, highredshift black holes will provide insights into seed black holes and black hole mass gap
 - Highly dependent on low frequency sensitivity

Evans et al. https://arxiv.org/abs/2109.09882