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ourth Observing Run (O4)
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04 Significant Detection Candidates: 81 (92 Total - 11 Retracted)

04 Low Significance Detection Candidates: 1612 (Total)

Show All Public Events
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SORT: EVENT ID (A-2)

Event ID Possible Source (Probability) Significant Location Comments

GCN Circular
Jan. 9, 2024
S240109a BBH (99%) Query &4 ) 1 per 4.3136 years
05:04:31 UTC
Notices | VOE

GCN Circular
Jan. 7, 2024
S240107b BBH (97%), Terrestrial (3%) Query 2 1.8411 per year
01:32:15 UTC
Notices | VOE

GCN Circular
Jan. 4, 2024 1 per 8.9137e+08
S240104bl BBH (>99%) Query 4
16:49:32 UTC years
Notices | VOE

GCN Circular :
Dec. 31, 2023 P ' 1 per 3.7932e+06
S231231ag BBH (>99%) Query s ).
15:40:16 UTC ¢ years
Notices | VOE

GCN Circular
Dec. 26, 2023 \ 1 per 2.8446e+42
S231226av BBH (>99%) Query ,
10:15:20 UTC years
Notices | VOE



https://gracedb.ligo.org/

Results from O3: Populations

Features in the mass spectrum

Over-density between 8M and
10Mg and around 26M 4

* A weaker feature present at
around 14Mg

* Absence of mergers with chirp
masses between 10Mg and
12Mg.

From Abbott et al, arXiv: 2111.03634
First discussed in Tiwari and Fairhurst,
arXiv: 2011.04502
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https://arxiv.org/abs/2111.03634
https://arxiv.org/abs/2011.04502

Results from O3: Unexpected Events
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https://arxiv.org/abs/2009.01075
https://arxiv.org/abs/2006.12611

Challenge: Accurate measurement
of mass and redshift

= Example: GW190521

= Distance uncertain to a factor of 2
largely due to degeneracy with
orientation.

= Corresponding redshift
uncertainty: 0.5 <z<1.1.

= GW measurements give M(a1 + z),
so distance uncertainty
contributes to mass uncertainty

Abbott et al, arXiv: 2009.01075



https://arxiv.org/abs/2009.01075

Challenge: Accurate measurement
of mass and redshift

= Example: GW190521

= Distance uncertain to a factor of 2
largely due to degeneracy with
orientation.

= Corresponding redshift
uncertainty: 0.5 <z <1.1.

= GW measurements give M(a1 + z),
so distance uncertainty
contributes to mass uncertainty

= More pronounced at high z

Abbott et al, arXiv: 2009.01075



https://arxiv.org/abs/2009.01075

Einstein Telescope and Cosmic Explorer

Maggiore et al. https://arxiv.org/abs/1912.02622 Evans et al. https://arxiv.org/abs/2109.09882

Next Generation GW Observatory Science Book
https://gwic.ligo.org/3Gsubcomm/documents.html 7



https://arxiv.org/abs/2109.09882
https://gwic.ligo.org/3Gsubcomm/documents.html
https://arxiv.org/abs/1912.02622

Sensitivity

* Both Cosmic Explorer
and Einstein Telescope
target a 10x sensitivity
improvement and a
broader frequency range _ == CE (40im)
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Science
Reach

Sensitivity to Black
Hole and Neutron Star
mergers

Redshift z

From Cosmic Explorer white paper:
Evans et al, arXiv:2306.13745

Total Binary Mass [M)]
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https://arxiv.org/abs/2306.13745
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Seed black holes

= Quasars observed at redshift z > 7
[less than 1 billion years after the
big bang] are powered by black
holes with mass > 109 Mg

= Likely population of seed black
holes at high redshifts that grow
through accretion and mergers to
form supermassive black holes

= Light seeds will be observable to
next-generation GW observatory

= Challenging to accurately
measure masses and redshift

mpH,T [Mo)]

From Valiante et al https://arxiv.org/abs/2010.15096
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https://arxiv.org/abs/2010.15096

— Full Waveform

GW multipoles | g

= Break distance-orientation degeneracy
by measuring additional GW multipoles

= Example: 120-60 Mg BBH at z=14

Full Waveform
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https://arxiv.org/abs/2310.18158

Observability of GW multipoles

— Full Waveform ] : — Full Waveform
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From Fairhurst et al, arXiv: 2310.18158 =3


https://arxiv.org/abs/2310.18158

Observing N Y, .
high-mass, N ‘
high-z BBH

= Can extract masses and
redshift of black holes from ' R T 5 W T
GW signals

= Observation would provide
evidence for ‘light seeds’

* Can also investigate
location of BH mass gap

From Fairhurst et al, arXiv: 2310.18158



https://arxiv.org/abs/2310.18158

Challenges in Observing high mass BBH

M (1 + z) = 4243.71+2114.39

* Example: 120-60 My BBH at z=21

* Can't accurately measure
mass/redshift. Could be

* (2, 2) mode of 120-60 Mg BBH at z=21
or

* (3,3) mode of 600-300 Mg BBH at z=5

redshift = 16.09+2:°1

redshift

15



Challenges in Observing high mass BBH

* Example: 120-60 Mg BBH at z=21 001 _ Eyent

y - 2nd Peak
* Can’t accurately measure

mass/redshift. Could be

* (2, 2) mode of 120-60 Mg BBH at z=21
or

* (3,3) mode of 600-300 Mg BBH at z=5
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Challenges in Observing high mass BBH

* Example: 120-60 Mg BBH at z=21 - — Event
—— 2nd Peak

* Can't accurately measure | —— 2nd Peak 33-mode
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mass/redshift. Could be
* (2, 2) mode of 120-60 Mg BBH at z=21
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Conclusions

" LIGO-Virgo-KAGRA are unveiling
the population of neutron stars
and black holes

* Next generation gravitational-
wave observatories are entering Cosmic
conceptual design phase Explorer

= Observatories will provide a
unique view of the universe

= Observation of high-mass, high-
redshift black holes will provide
insights into seed black holes and
black hole mass gap

= Highly dependent on low frequency
sensitivity Evans et al. https://arxiv.org/abs/2109.09882
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