

Terrestrial Very-Long-Baseline Atom Interferometry Workshop April 3-5, 2024, London

The progress of ZAIGA project

Lin Zhou

Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, China

April 3, 2024

Overview of ZAIGA

Environment and infrastructure design

Key unit technologies

Plan and Design

A-EP (Equivalence Principle test)
-CE (Clock Experiments)
-RM (Rotation Measurement)
-GW (Gravitational Wave detection)
-DM (Dark Matter detection)
-GG (Geological and Geophysical measurement)

Mingsheng Zhan et al., Intl. J. Mod. Phys. D 29,1940005 (2020); arXiv:1903.09288

A platform to test gravity theory with large scale atomic interferometers, gyros and optical clocks

- Equivalence Principle test — 10-m Als, 240-m Al
- Clock Experiments
 Sr clocks
- Rotation Measurement
 20-m gyros
- Gravitational Wave detection
 Al array (⊥, //)、 clocks
- Dark Matter detection
 Al array (⊥, //)、 clocks
- Geological and Geophysical measurement
 - gravimeters, seismometers

Mission assignment

3 Phases

Phase I: diversity in the 240 m AI

Item	Project Goal
AI baseline (Free fall time)	$240 \text{ m} (\text{T} \ge 6 \text{ s})$
Atom species for AI	⁸⁵ Rb ⁸⁷ Rb ⁸⁷ Sr ⁸⁸ Sr
Gravity measurement	$1 \times 10^{-12} \text{ g}$
Rotation measurement	$8 \times 10^{-12} \text{ rad/s} (2 \times 10^{-6} \text{ °/h})$
Stability of Sr/Yb optical clock	2×10^{-18}
Local gravity monitoring	1 μGal

Item	EP	GW	DM		
Vacuum pressure	$\sim 1 \times 10^{-8}$ Pa (Collision loss of Rb: 1.3%@3s, 6%@14s)				
Diameter of vacuum pipe	200mm (Rotation compensation: ±30mm@240m, T=7s)				
Magnetic field fluctuation	<10 nT (Rb)	<10 nT (Rb) ~100 nT (Sr)	<10 nT (Rb) ~100 nT (Sr)		
Atom number	10 ⁵ ~10 ⁶ /shot	~10 ⁶ /shot	~10 ⁶ /shot		
Laser power	>10W (780 nm)	>5W (698 nm)	>5W (Sr, 698 nm, 689nm) >10W (Rb, 780 nm)		

U. D. Rapol, A. Wasan et al. arXiv:physics/0204022v1 J. Glick, Z. Chen et al. AVS Quantum Sci. 6, 014402 (2023) Mingsheng Zhan *et al.*, *Intl. J. Mod. Phys. D* **29**,1940005 (2020)

Overview of ZAIGA

Environment and infrastructure design

Key unit technologies

The Site

location

About mountain Zhao (Zhaoshan)

The weather in Mountain Zhao

Location: E 114.67° and N 30.17° Mean annual precipitation: 1476.8 mm. Mean annual evaporation: 1480.7 mm. Annual average temperature: 17.35 °C. Average air temperature in July and August: 29.3 °C . Average air temperature in January: 4 °C . Average annual frost days: 29.8 days.

Underground water

Bedrock fissure water with a general burial depth of 10-80 meters.

A normal water inflow of 1335.3 m³/d and a maximum water inflow of 2002.90 m³/d. (water balance method)

A maximum water inflow of 1037.88 m³/d and a water inflow of the vertical shaft is 130.61 m³/d. (groundwater dynamics method)

We need to pay attention to underground water.

Mountain Zhao

Area: about 20 km² Altitude of main peak: 418.8m

Tunnel engineering geology

ZAIGA is located in a geologically stable environment, and the engineering geological conditions are favorable. There are no geologic constraints impeding the construction of the project.

Underground temperature

Background magnetic field noise

~300 nT (Subway shut down)

The ZAIGA facility is situated within an ecological conservation zone, ensuring the long-term stability of its surrounding environment.

Phase I: design and sketch

The scientific research park (on the mountain foot, 10000 m^2)

The Shaft and the tunnel (inside the mountain, 240 m+1400 m)

Phase I: The shaft and the Experimental hall

Shaft of ZAIGA

Height: 228m Diameter: 9m Floor height: 3m Number of floors:76

Experimental hall Height: 13 m Area : 200 m²

To provide more space for future experimental system upgrade and research content expansion, the shaft adopts multistory design. This kind of design is also convenient for the installation, maintenance of the long baseline atom interferometer.

Overview of ZAIGA

Environment and infrastructure design

Key unit technologies

Planning of the shaft and the experimental hall

Background environment monitoring

Platform optical and electronic systems

Rb Al \times 3 + Sr Al \times Sr Clock \times Atom Gravimeter \times Superconducting gravimeter \times Other sensors

Gravity observation networks and platforms

240-m atom interferometer

....

10 m AI: 12m ×3 (0 m,114m,228m) Atom source: Rb & Sr Vacuum chamber pressure: ~1×10⁻⁸ Pa Residual field fluctuation: <10 nT

H=114 m C V 131. 1 实驗坚持 实验大厅 Ā 一期工程交通隧道 1000 1000

地表辅助构筑物

▼ 107.00

<u>▼100.00</u>

♥ 94.00

Vacuum Chamber + magnetic shield

10 m Al

Vacuum chamber module

Titanium sublimation pump (TSP)

Support cage

vacuum gauge vacuum valve

sublimation pump

getter pump(Getter)

lon pump

Bellows

length: 6m diameter: 200 mm

Module 2:

Module 1:

diameter: 200 mm

thermal expansion: 5cm

Materials	Bottom	Middle	Pressure
Ti	300 L Ion 1000 L Getter 1000 L TSP	0	1.1E-8Pa
Ti	300 L Ion 1000 L Getter 2000 L TSP	2000 L TSP	2E-9Pa

length: 12 m (5.7m+0.6m+5.7m)

vacuum pump: TSP、Getter、Ion

By Limit Vacuum Technology (Beijing) Co. Ltd

Ultracold atom source

Rb

Next step: ~10⁶ atoms, atom clouds transfer, large momentum transfer

By Dr. Rundong Xu

Sr

Yb clock: 5.4E-18

Sr Vacuum Chamber

Next step: Sr clock and interferometer

By Prof. Linxiang He

Large atomic beam source

Ramsey fringes with the sampling rate is 800Hz

Atom temperature: 100 µK (Sub-Doppler Cooling)

Atom number: 10¹²atoms/s(capillaries)

Magnetic shield

(i): Welding+annealing(ii)(iii)(iV): compensation

10-m Al 11.4 m, ~8 nT

Y. H. Ji, et al., Rev. Sci. Instrum. 92, 083201 (2021).

HGSE method for magnetic field measurement

Hyperfine ground state exchange (**HGSE**) Real-time magnetic field measurement method

$$\begin{split} \Delta \phi_{i-F} &= 2\pi \alpha_{i-F} \int_{0}^{2T} \{ B^2[z^{(u)}(t)] - B^2[z^{(d)}(t)] \} dt \\ \alpha_{85-2} &= -646.99 \text{ Hz/G}^2 \\ \alpha_{85-3} &= 646.99 \text{ Hz/G}^2 \\ \end{split}$$

The differential phase shifts respond to magnetic field variations

The HGSE method is still valid in the presence of other sysmatic drifts

Optical and electronic system

Portable optical & electrical system

Working temperature: 15-25 °C Lasers for cooling and traping: 461nm: >1 W, 780 nm: > 3 W 1064nm: ~50 W

461nm: 2~5 W, 1064nm: ~160 W 780 nm: 2~25 W, 698 nm: ~8 W 689 nm: ~8 W

High power laser source

The Wuhan 10-m AI

Weak equivalence principle test

Vacuum chamber Magnetic shield 12.3 m, 2×10⁻⁸ Pa 11.4m, 8 nT (10 m)

L. Zhou, et al., Gen. Relat. Gravit. 43, 1931(2011)

Four-wave double-diffraction Raman transition (4WDR) scheme

Phase shear readout ⁸⁷Rb: T=1.3s, 4.5×10⁻¹¹/shot ⁸⁵Rb & ⁸⁷Rb : T=1s, 8.6×10⁻¹²@7168s

Equivalence principle test

EP test 4WDR

2015, mass test 3.0×10⁻⁸

Lin Zhou, et al., Phys. Rev. Lett. 115,013004(2015)

2019, mass test 6.7×10⁻¹⁰

Lin Zhou, et al., arXiv:1904.07096 [quant-ph] (2019)

2021, mass-energy joint test 1.4 \times 10⁻¹⁰ 0.4 \times 10⁻¹⁰

Lin Zhou, et al., Phys. Rev. A 104, 022822(2021)

Sensitivity Improvement of the Wuhan 10-m Al

2015

4WDR method 8E-9 L. Zhou, S.T. Long et al. *Phys. Rev. Lett.* **115**, 013004 (2015)

2018

 Coriolis effect compensation
 5.1E-10

 W. T. Duan, C. He et al. Chin. Phys. B 29, 070305(2020)

2020

 AC Stark shift Optimization
 7.3E-11

 L. Zhou, C. He et al. Phys. Rev. A 104, 022822 (2021)

2022

Shear phase readout

2.5E-11

L. Zhou, S. T. Yan et al. *Frot. Phys.* **10**, (2022) S. T. Yan et al. *Phys. Rev. A* **108**, 063313 (2023)

2023

Gravity gradient compensation

8.6E-12

Research Roadmap

Buildir	ng abilities	Scientific Tests		DM & GW			
Item	Goal	Item	Goal	Item	Goal	Goal	
AI baseline (Falling time)	240 m ($T \ge 6 s$)	WEP test	$\eta \sim 10^{-13}$	Dark matter probe	d ~ 10 ⁻⁶ @ 1 Hz		
Atom species for AI	⁸⁵ Rb ⁸⁷ Rb ⁸⁷ Sr ⁸⁸ Sr	Redshift test	$\alpha \sim 10^{-5}$	GW detection	s ~ 10 ⁻²¹ @ 1 Hz	Z	
Gravity measurement	$1 \times 10^{-12} \text{ g}$	Lense-Thirring effect	$\sim 10^{-14}$ rad/s				
Rotation measurement	8×10^{-12} rad/s	Dark matter probe	d ~ 10 ⁻⁴ @ 1 Hz				
Stability of Sr/Yb clock	2×10^{-18}	GW detection	s ~ 10 ⁻¹⁹ @ 1 Hz				
Local gravity monitoring	1 µGal						
1							
Phas 2022 -	se I 2027	Phase II: 2027 - 2035		Phase III 2035 -		ZAIG	
240 m Ver 20 m Gyro 10 m Dual 2E-18 Op	240 m Vertical AI 20 m Gyros 10 m Dual Rb/Sr AI 2E-18 Optical Clocks		240 m Vertical AI array 1000 m Horizontal AI array		Iorizontal AI		

Group members: Ming-Shen Zhan, jin Wang, Chuan He, Sitong Yan, Run-Dong Xu, Dong-Feng Gao, Xi Chen, Runbing Li, Min Liu, Wei-Tou Ni, Lingxiang He, Haoming Yan, Jiangcun Zhou

Graduate students: Yu-Hang Ji, Zhuo Hou, Jun-Jie Jiang, Jia-Qi Lei, Zhixin Li, Lu Zhou, Yuxuan Pan, Youmeng Hu.

Ministry of Sci & Tech of China (MOST)

Funding:Chinese Academy of Sciences (CAS)Natural Science Foundation of China (NSFC)

Thank you for your attention!