
Development Status of RNTuple:
the future HEP Columnar Storage

Software Technology

Danilo Piparo for the ROOT team (CERN, EP-SFT)

15-05-2024 For more information about ROOT, and
not only RNTuple, please see this talk
at the WLCG/HSF Workshop 2024!

https://indico.cern.ch/event/1369601/contributions/5867782/
https://indico.cern.ch/event/1369601/contributions/5867782/

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

What is RNTuple?

2

▶ RNTuple is the successor of TTree, ROOT's columnar storage technology

▶ RNTuple is part of current ROOT releases, approaching production quality (e.g. fixed

file format, stable interfaces)

● By the end of 2024 the file format on disk will be frozen (RNTuple 1.0): read back what was

written in RNTuple. The C++ interfaces will continue to evolve.

▶ RNTuple stores fundamental types, arrays thereof but also sophisticated data

models* that characterise our science

▶ RNTuples are stored in ROOT files

▶ For SW frameworks, RNTuple requires code migration from TTree interfaces; it is a drop-

in replacement for RDataFrame based analyses (no user code changes)

* Yes, this still needs reflection

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

Why RNTuple?

3

Based on 25+ years of TTree experience, RNTuple is a redesigned columnar I/O subsystem aiming at:

▶ Less storage, compute and network usage

● Significantly smaller files and higher throughput, often by factors

▶ Systematic use of data checksums and runtime exceptions to prevent silent I/O errors

▶ Efficient support of modern hardware

● Asynchronous & parallel I/O + many-core friendly + direct data transfer to GPU memory

● Native support for object stores in addition to local and remote ROOT files, but not all of the

TTree features

▶ Binary format defined in a dedicated specification

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

ROOT's Strategic Goals

4

Provide a unified software package for the

storage, processing, visualisation and analysis

of scientific data that is reliable, performant

and supported, that is easy to use and obtain,

and that minimises the computing resources

needed to achieve scientific results.

RNTuple also fits well
our strategic goals.

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

Context of RNTuple

5

▶ Modulo notable exceptions (e.g. ATLAS/LHCb raw), that space is (going to be)

used for data in ROOT format, mainly columnar (TTree): ROOT DOES SCALE.

▶ Storage pledged at Grid sites is not the only one used for ROOT files: e.g.T3s,

university clusters, personal laptops, analysis facilities, cloud...

QoS ALICE ATLAS CMS LHCb Total

Disk [PB] 199 406 304 93 1002

Tape [PB] 283 666 673 250 1875
`24 Pledges: source CRIC

RNTuple: the great responsibility and
opportunity to build on 25+ years of

success and experience of TTree

2024 Disk + tape pledges at T{0,1s,2s}: ~2.9 EB

See here for more info

https://wlcg-cric.cern.ch/core/vopledgereq/listcomp/
https://root.cern/about/publications/

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

2.9 EB is an Underestimate: CERNBox

6

Just one example: ROOT files on

CERNBox, CERN's Sync'n'Share storage

▶ 8.8% of the files are ROOT files

▶ ROOT files are 40% of the volume

(~4.4 PB out of 11PB)

8.8%

Courtesy of G. Lo Presti
and D. Castro (CERN IT)

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

HEP Software Support Timeline

7

RNTuple: example of leading
edge innovation in the context

of very long term support

Plot inspired by M. Mazurek

https://indico.cern.ch/event/1327487/

Technical Insights,
Programming Model and

Performance

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

HW Aware SW Development

9

Next-Generation Experiments: HL-LHC, DUNE, EIC
▶ From 300fb-1 in run 1-3 to 3000fb-1 in HL-LHC run 4-6
▶ Single events in the multi-gigabyte range for DUNE
▶ As a starting point, preparing for ten times the current demand

Full exploitation of modern storage hardware
▶ Fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)
▶ Flash storage is inherently parallel → asynchronous, parallel I/O is key
▶ Heterogeneous computing hardware → GPU should be able to load data directly from SSD, e.g. to

feed ML pipeline
▶ Distributed storage systems move from POSIX to object stores

This has consequences for our software, for example: at 10GB/s, we have ~3μs to process a 32kB
block → CPU optimizations deep into I/O stack

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RNTuple Compatibility Overview

10

Two principles:
1. A new event data format and a new API: maximise opportunities for optimisations
2. At the same time, RNTuple aims at smooth integration with the ROOT/HEP ecosystem.
▶ RNTuple API for writing and reading, targeting frameworks: follows modern C++ core guidelines
▶ For RDataFrame code: no change required
▶ Consistent tooling

● RBrowser support
● Disk-to-disk importer TTree → RNTuple [1] [2]
● hadd support

▶ RNTuple adopts TTree’s I/O customization and schema evolution system (work in progress)
▶ TTree::Draw will not be replicated "as-is" in RNTuple; a possible replacement on top of RDataFrame is

under discussion

A TTree and an RNTuple in the same ROOT file. In this example, the RNTuple
data has been converted from the tree using the RNTupleImporter.

https://root.cern.ch/doc/master/ntpl008__import_8C.html
https://root.cern.ch/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RNTuple in the RBrowser

11

Yes, we are modernising ROOT's GUI and graphics system, too. Will be part of ROOT 6.32.00: a simple switch to activate it.
$ root --web or, programmatically, gROOT->SetWebDisplay(). As usual, happy to get feedback and improve!

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RDataFrame Analysis with TTree

12

TTree Version

For more details see the di-muon analysis tutorial

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RDataFrame Analysis with TTree

13

Identical code. Just change the
input files: like before, but better.

RNTuple Version

For more details see the di-muon analysis tutorial

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RNTuple Binary Format

14

Benefits of a new binary format:
▶ More efficient storage of collections and

boolean values
▶ Addition of new basic types, e.g. f16
▶ Little-endian numbers: memory mappable on

most contemporary platforms
▶ Type-based encoding: e.g. zig-zag for signed

ints, bit packing for bools, etc.
▶ Split storage for arbitrarily nested

collections
▶ More scalable meta-data, better memory

control
▶ New default compression: zstd
▶ Format independent of TFile

Technical Note: RNTuple has its own schema encoding,
independent of the streamer info

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

ATLAS and RNTuple

15

Material from S. Mete, ACAT 2024, some highlighting added

RNTuple adoption for other experiments
CMS, LHCb and ALICE are also making substantial
progress thanks to the tireless efforts, also in collaboration
with the ROOT team.
We are here to support the transition to RNTuple of all
experiments

https://indico.cern.ch/event/1330797/contributions/5796492/

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

Tooling and Some Code

16

Convert your existing TTree to RNTuple: Get detailed storage information for your RNTuple:

#include <ROOT/RNTupleImporter.hxx>

using ROOT::Experimental::RNTupleImporter;

auto importer = RNTupleImporter::Create(
“Events”,
“myNanoAOD.ttree.root”,
“myNanoAOD.rntuple.root”);

// Optional
importer->SetNTupleName(“EventsNTuple”);

auto writeOptions = importer->GetWriteOptions();
// Optional, default is zstd level 5
auto algo = RCompressionSetting::EAlgorithm::kLZMA;
writeOptions.SetCompression(algo, 7);

importer->SetWriteOptions(writeOptions);

importer->Import();

#include <ROOT/RNTupleInspector.hxx>

using ROOT::Experimental::RNTupleInspector;

auto inspector = RNTupleInspector::Create(
“EventsNTuple”, “myNanoAOD.rntuple.root”);

std::cout << “My NanoAOD is compressed using ”

<< inspector->GetCompressionSettingsAsString()
<< std::endl;

inspector->PrintColumnTypeInfo();

my NanoAOD is compressed using lzma (level 7)
column type | count | # elems | compr. bytes | uncompr. bytes
-------------|-- ----|------------|--------------|-----------------
SplitIndex64 | 5 | 267230990 | 84109056 | 2137847920
SplitReal32 | 45 | 3856668029 | 11402474398 | 15426672116
SplitInt32 | 15 | 1436663181 | 147427186 | 5746652724

RNTupleImporter docs and tutorial RNTupleInspector docs

https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html
https://root.cern/doc/master/ntpl008__import_8C.html
https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleInspector.html

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RNTuple Metrics

17

auto anchor = file->Get<RNTuple>("ntpl");
auto reader = RNTupleReader::Open(anchor);
reader->EnableMetrics();
// …
reader->PrintInfo(ENTupleInfo::kMetrics);

auto tree = file->Get<TTree>("tree");
TTreePerfStats *ps = new TTreePerfStats("ioperf", tree);
// …
ps->Print();

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

Parallel Writing: Application Benchmark

18

▶ Skimming of the "Analysis Grand Challenge" (AGC)
dataset
● Drop unused columns
● Filter events based on coarse cuts and entries in

nested collections
▶ Compare multiple implementations of parallel

writing
● Using ROOT’s implicit multithreading (IMT)
● Separate files + merging with hadd
● TBufferMerger (in-memory merging)
● Parallel RNTuple writing

▶ Parallel RNTuple writing as fast as independent
writing into separate files
● Reaches 330 MB/s, below hardware limit:

parallel writing is not the bottleneck! RNTuple makes leading
edge R&D possible

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RNTuple Validation and Limit Testing

19

Joint effort between IT-SD and EP-SFT on large-scale testing
▶ IT provided testbed: 80 nodes, 20PB storage, 100GbE
▶ Quick cycles of benchmarking and software improvements on ROOT and XRootD

● First numbers with the "Analysis Grand Challenge" (a community standard benchmark) confirm
the speed improvements of RNTuple when reading from EOS with high core counts (see plot)

● workload variations

W
or

k
in

 p
ro

gr
es

s
(A

. S
ci

ab
à

et
 a

l.)

▶ Next steps during summer months
● Tests with experiment-provided tasks

▶ Target for final results: CHEP; contribution submitted

RNTuple Interface Review
▶ Conducted by US High Energy Physics Center for

Computational Excellence (HEP-CCE)
▶ Including Experiment experts form ATLAS, CMS & DUNE
▶ Final report expected in Q3/2024
Thanks!!

Planning and Schedule

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RNTuple Type Support

21

Type Class Types EDM Coverage RNTuple Status

PoD
bool, (unsigned) char, std::byte,
(u)int[8,16,32,64]_t, float, double Flat n-

tuple Reduced
AOD

Full AOD /
ESD /
RECO

Available

(Nested) vectors std::vector, RVec, std::array,
C-style fixed-size arrays

Available

String std::string Available

User-defined classes Non-cyclic classes with dictionaries Available

User-defined enums Scoped / unscoped enums with dictionaries Available

User-defined collections Non-associative collection proxy Available

stdlib types
std::atomic, std::pair, std::tuple,
std::bitset, std::(unordered)set,
std::(unordered)map

Available

Alternating types
std::variant, std::unique_ptr,
std::optional

Available

Unsplit All ROOT streamable objects (stored as byte array) Available

Intra-event links "&Electrons[7]" post version 1.0

Low-precision
floating points

Double32_t, Float16_t, (b)float16

Optimization benefitting all EDMs

Available

Custom precision and range ongoing work / v1.0

Precision cascades post version 1.0

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

Schedule Presented to the LHCC, Updated

22

Proof of
concept Prototype First

exploitation
Pre-

production Production

~2018-19 ~2019-20 ~2021-22 ~2022-23 ~2023-24

✅ Architecture
✅ Review on

state-of-the-art
✅ First prototypes

✅ Adoption in
ROOT::Experimental

✅ I/O scheduler for
local and remote
access

✅ Performance
validation

⛅ Object store support
✅ DAOS (HPC)
⛅ S3 (Cloud)

✅ RNTuple version 1 spec
🖉 RNTupleLite
⛅ Schema evolution
✅ Disk-to-disk conversion
⛅ Virtual data sets for

skims and selections
✅ First exposure to

frameworks:
✅ CMSSW nanoAOD

output module
✅ Prototyping by

ATLAS, CMS, LHCb
I/O experts

✅ RDataFrame
bulk processing

⛅ Debugging and
inspection tools

🖉 Metadata API
✅ Special use case

support: e.g. backfill,
in-memory adapters

✅ XRootD support
✅ Validation of

feature coverage
⛅ Training experiments’

core developers
⛅ Large-scale

experiment
benchmarks

⛅ PB scale tests
🖉 Automatic optimization

features
⛅ Low-precision floats
🖉 ML Training: direct GPU

transfer
🖉 End-user training
⛅ Training and support for

code and data migration
✅ = available
⛅ = under development
🖉 = programme of work
— = in collaboration with

users/experiments

Work items defined: Nov 2021
Development state: May 2024

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

Potential Future Directions

23

The RNTuple design opens the door to new functionality, which can be

worked on after the initial production release.

For example:

▶ Horizontal fast merge ("persistified friends")

▶ Zero-copy merge on copy-on-write file systems

▶ Better metadata support (e.g. scale factors, varied columns)

▶ Layout optimizer that rewrites a file for strictly linear reads

Conclusions

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

Conclusions

25

▶ TTree has been extremely successful in the last 25y: it remains available & supported

▶ Building on top of the experience accumulated so far, RNTuple is being developed to scale into

the HL-LHC era (and beyond)

● A drop-in replacement for analysis, not for fwks. Many benefits to balance this downside

▶ Golden opportunity for leading edge R&D, e.g. parallel writing, object store support, low level hw

optimisations

▶ A solid plan ahead, agreed with experiments, monitored continuously, results and features

are being delivered

▶ v1.0 due at the end of 2024: fix file format on disk, still evolving interfaces

▶ Adoption by experiments progressing quickly, thanks to the effort of the core software teams,

fully supported by the ROOT team

Backup

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT – 15.5.2024

RNTuple Classes Design

27

General coding guidelines

▶ Following C++ core guidelines

▶ Use of exceptions (RException)

▶ Conditionally thread-safe

▶ Compile-time type-safe interfaces, runtime type-

safe interfaces and void* interfaces

▶ Shared pointers for values to be (de-)serialized

● With option to pass raw pointes

