Development Status of RNTuple:
the future HEP Columnar Storage
Software Technology

Danilo Piparo for the ROOT team (CERN, EP-SFT)

15-05-202 For more information about ROOT, and
>-05-2024 not only RNTuple, please see this talk
at the WLCG/HSF Workshop 2024!

https://indico.cern.ch/event/1369601/contributions/5867782/
https://indico.cern.ch/event/1369601/contributions/5867782/

What is RNTuple?

» RNTuple is the successor of TTree, ROOT's columnar storage technology
» RNTuple is part of current ROOT releases, approaching production quality (e.g. fixed
file format, stable interfaces)

e By the end of 2024 the file format on disk will be frozen (RNTuple 1.0): read back what was

written in RNTuple. The C++ interfaces will continue to evolve.
» RNTuple stores fundamental types, arrays thereof but also sophisticated data
models* that characterise our science
» RNTuples are stored in ROOT files

» For SW frameworks, RNTuple requires code migration from TTree interfaces; it is a drop-

in replacement for RDataFrame based analyses (no user code changes)

* Yes, this still needs reflection

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 2

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

Why RNTuple?

Based on 25+ years of TTree experience, RNTuple is a redesigned columnar I/0O subsystem aiming at:
» Less storage, compute and network usage
e Significantly smaller files and higher throughput, often by factors
» Systematic use of data checksums and runtime exceptions to prevent silent I/0O errors
» Efficient support of modern hardware
e Asynchronous & parallel I/0 + many-core friendly + direct data transfer to GPU memory

e Native support for object stores in addition to local and remote ROOT files, but not all of the

TTree features

» Binary format defined in a dedicated specification

III 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 III

LT .\]
RNTuple work in progress in ROOT::Experimental RNTuple goes production, adoption phase

TTree enters legacy support mode

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 3

ROOT's Strategic Goals

Provide a unified software package for the
storage, processing, visualisation and analysis
of scientific data that is reliable, performant
and supported, that is easy to use and obtain,

and that minimises the computing resources

needed to achieve scientific results.

RNTuple also fits well
our strategic goals.

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 4

Context of RNTuple

m--

Disk [PB] 199

Tape [PB] 283 666 673 250 1875
*24 Pledges: source CRIC

» Modulo notable exceptions (e.g. ATLAS/LHCb raw), that space is (going to be)
used for data in ROOT format, mainly columnar (TTree): ROOT DOES SCALE.

» Storage pledged at Grid sites is not the only one used for ROOT files: e.g.T3s,

university clusters, personal laptops, analysis facilities, cloud...

RNTuple: the great responsibility and

opportunity to build on 25+ years of
success and experience of TTree

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024

2024 Disk + tape pledges at T{0,1s,2s}: ~2.9 EB

4. The ROOT 1/O system

One of the basic pillars of the ROOT system is its
hierachical object database. The database is designed 1o
be particularly efficient for objects frequently manipu-
lated by physicists: histograms, ntuples, trees and events.

One could argue that this functionality can also be
provided by a full fledged commercial Object Oriented
Data Base Management System (OODBMS). We con-
sider OODBMS:s as potential candidates for the replace-
ment of tools like HEPDB [4] or FATMEN [5]. ie
when locking and concurrent writing is required. But we
do not believe that they provide a solution for the types
of objects mentioned above. Why?

— Interactive computing is towards commodity desktop
and notebock devices. They will be heavily used for
histogram manipulation and data presentation. This
should not require a special connection to a central
data base or a license server (think of home compu-
ting).

~ OODBMSs, by definition, are designed to store com-
plete objects. Data clustering is organized around ob-
jects and containers of objects. They are not designed
to access only a subset of the object attributes. We
have demonstrated with the PAW column-wise
Ntuples the usefulness of having access to single at-
tributes. The ROOT Tree functionality cannot be pro-
vided in an efficient way by the current OODBMSs.

- OO0 data bases do not support on the fly duta compres-

sion. We are designing experiments that will generate

massive amounts of data. The cost of direct access
devices for tens of terabytes may be a dominant factor
in the cost of computing.

Attribute range specification is not supported. A 4 byte

O Si S

The data bases companies are small and fragile. Will

they survive after a few years? The technology is not

yet mature and compatibility between vendors is not

guaranteed.

Ile. INTERACTIVE ANALYSIS

See here for more info

https://wlcg-cric.cern.ch/core/vopledgereq/listcomp/
https://root.cern/about/publications/

2.9 EB is an Underestimate;: CERNBox

CERNBox all counts - NS

sys internal

Just one example: ROOT files on

CERNBox, CERN's Sync'n'Share storage
«= P 8.8% of the files are ROOT files

» ROOT files are 40% of the volume

(~4.4 PB out of 11PB)

edia log/trc
preprint
engineering email
Courtesy of G. Lo Presti

and D. Castro (CERN IT)

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 6

HEP Software Support Timeline

RNTuple: example of leading
edge innovation in the context
of very long term support

1995 2000 2005 2010 2015 2020
Plot inspired by V. Mazurek

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 7

https://indico.cern.ch/event/1327487/

Technical Insights,
Programming Model anc
Performance

HW Aware SW Development

Next-Generation Experiments: HL-LHC, DUNE, EIC

» From 300fb-1 in run 1-3 to 3000fb-1 in HL-LHC run 4-6

» Single events in the multi-gigabyte range for DUNE

» As a starting point, preparing for ten times the current demand

Full exploitation of modern storage hardware

» Fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)

» Flash storage is inherently parallel - asynchronous, parallel 1/0 is key

» Heterogeneous computing hardware — GPU should be able to load data directly from SSD, e.g. to
feed ML pipeline

» Distributed storage systems move from POSIX to object stores

This has consequences for our software, for example: at 10GB/s, we have ~3ps to process a 32kB
block — CPU optimizations deep into 1/0 stack

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 9

RNTuple Compatibility Overview

Two principles:
1. A new event data format and a new API: maximise opportunities for optimisations

At the same time, RNTuple aims at smooth integration with the ROOT/HEP ecosystem.

2.

» RNTuple API for writing and reading, targeting frameworks: follows modern C++ core guidelines
» For RDataFrame code: no change required
>

Consistent tooling

/data/gg_data.root
/data/gg_data.root

KEY: TTree mini;55 mini [current cycle]
e RBrowser Support KEY: TTree mini;54 mini [backup cyclel]
. . . KEY: ROOT::Experimental::RNTuple mini_imported;
[=-t0- — -
DISk to dISk |mp0rter TTree RNTUple ATTree and an RNTuple in the same ROOT file. In this example, the RNTuple
data has been converted from the tree using the RNTupleImporter.
e hadd support & PresTe

» RNTuple adopts TTree’s I/0 customization and schema evolution system (work in progress)

» TTree::Draw will not be replicated "as-is" in RNTuple; a possible replacement on top of RDataFrame is
under discussion

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 10

https://root.cern.ch/doc/master/ntpl008__import_8C.html
https://root.cern.ch/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html

RNTuple in the RBrowser

ROOT RBrowser A=A X
= ‘r. ROOT 7
Filter Q| & » ill] oSt x +
File v Edit View v Options Tools v Help
Name size Drawing of RField fZ
hdraw
> & ntploo3_lhcbOpenData.root 453.5M = Entries 500000
i 16000_— Mean 100.0
£ ntplooa_dimuon.C 3.9K = Std Dev 9.988
{l ntploos_introspection.C 4.5K 2000
v & ntplo05_introspection.root 10.4M. 12000:—
v Vector3;1 121 10000—
v Gv3 =
< 8000—
Ax -
6000—
afy =
P 4000—
ailx;1 618 2000—
aly; 596 o Tinllonnallonnnllonnnllonnnflomy L
70 80 90 100 110 120 130 140
> & ntplo06_data.root 2.7M
{2 ntplooé_friends.C 2.7K
Enter command
> & ntplo06_reco.root 956.0K
] ntploo7_mtFill.C 4.6K
> & ntploo7_mtFill.root 9.1M

Yes, we are modernising ROOT's GUI and graphics system, too. Will be part of ROOT 6.32.00: a simple switch to activate it.
$ root --web or, programmatically, gROOT->SetWebDisplay () . As usual, happy to get feedback and improve!

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 11

RDataFrame Analysis with TTree

For more details see the di-muon analysis tutorial

import ROOT

Enable multi-threading
ROOT.ROOT.EnableImplicitMT()

Create dataframe from NanoAOD files — -
df = ROOT.RDataFrame("Events", CMs open Data Vs =8TeV, Lim =11.6fb
"root://eospublic.cern.ch//eos/opendata/cms/derived-data/AOD2NanoAODOutreachTool §%
/Run2012BC_DoubleMuParked_Muons.root™") g r [
o L
L
For simplicity, select only events with exactly two muons and require opposite charge pd 105 - J/\I]
df_2mu = df.Filter("nMuon == 2", "Events with exactly two muons") E p,(l)
df_os = df_2mu.Filter("Muon_charge[@] != Muon_charge[1]", "Muons with opposite charge") = Tl . (I)
- |
Compute invariant mass of the dimuon system — ’-\.,»LV_JJ‘LJJ M . Y(1 ,2,38) Z
df_mass = df_os.Define(104 - ’
"Dimuon_mass", "InvariantMass(Muon_pt, Muon_eta, Muon_phi, Muon_mass)" = \ ’ f
> = d JW
I i
r R S
Make histogram of dimuon mass spectrum. Note how we can set titles and axis labels in one go. — g «‘0" MW ”
= df_mass.HistolD(("Dimuon_mass", "", 30000, 0.25, 300), "Dimuon_mass") 3 st ", |
10° =— ! \
Request cut-flow report E M | |
report = df_mass.Report() C iyt %
- L
Produce plot TT V 5
ROOT. gStyle.SetOptStat(0) ree e rs I o n 10° = m
ROOT.gStyle.SetTextFont(42) = ‘
¢ = ROOT.TCanvas("c", "", 800, 700) C
c.SetLogx(Q) L ‘
c.SetLogyQ)
10 —
h.SetTitle("") E
h.GetXaxis().SetTitleSize(0.04) C
h.GetYaxis().SetTitleSize(0.04)
h.DrawQ)
1=—
label = ROOT.TLatex() EL 1 Ll L [
label.SetNDC(True)
label.DrawLatex(@.175, 0.740, "#eta"); label.DrawLatex(@.205, 0.775, "#rho,#omega") 1 10
label.Drawlatex(0.270, 0.740, "#phi"); label.Drawlatex(0.400, 0.800, "1/#psi™) (GeV)
label.DrawLatex(@.415, 0.670, "#psi'"); label.DrawLatex(0.485, 0.700, "Y(1,2,35)")

label.DrawLatex(@.755, 0.680, "Z")
label.SetTextSize(0.040); label.DrawLatex(0.100, 0.920, "#bf{CMS Open Data}")
label.SetTextSize(0.030); label.DrawLatex(0.630, 0.920, "#sqrt{s} = 8 TeV, L_{int} = 11.6 fbA{-1}")

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 12

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html

RDataFrame Analysis with TTree

import ROOT

Enable multi-threading
ROOT.ROOT.EnableImplicitMT()

Create dataframe from NanoAOD files
df = ROOT.RDataFrame("Events", "http://root.cern/files/tutorials/ntpl@04_dimuon_vlrc2.root")

For simplicity, select only events with exactly two muons and require opposite charge
df_2mu = df.Filter("nMuon == 2", "Events with exactly two muons")
df_os = df_2mu.Filter("Muon_charge[@] != Muon_charge[1]", "Muons with opposite charge")

Compute invariant mass of the dimuon system
df_mass = df_os.Define(
"Dimuon_mass", "InvariantMass(Muon_pt, Muon_eta, Muon_phi, Muon_mass)"

D)

Make histogram of dimuon mass spectrum. Note how we can set titles and axis labels in one go.
= df_mass.HistolD(("Dimuon_mass", "", 30000, 0.25, 300), "Dimuon_mass")

Request cut-flow report
report = df_mass.Report(Q)

Produce plot
ROOT.gStyle.SetOptStat(@)
ROOT gStyle.SetTextFont(42)

= ROOT.TCanvas("c", "", 800, 700)
c. SetLogx()
c.SetLogyQ)

RNTuple Version

h.SetTitle("")
h.GetXaxis().SetTitleSize(0.04)
h.GetYaxis().SetTitleSize(0.04)
h.DrawQ)

Identical code. Just change the

input files: like before, but better.

For more details see the di-muon analysis tutorial

label
label
label
label

= ROOT.TLatex()
.SetNDC(True)
.DrawLatex(0.175, 0.740,
.DrawLatex(0.270, 0.740,

"#eta"); label.DrawLatex(0.205, 0.775,
"#phi"); label.DrawLatex(0.400, 0.800,
label.DrawLatex(0.415, 0.670, "#psi'"); label.DrawLatex(@.485, 0.700,
label.DrawLatex(0.755, 0.680, "Z")

label.SetTextSize(0.040); label.DrawlLatex(@.100, 0.920,
label.SetTextSize(0.030); label.DrawlLatex(0.630, 0.920,

"#rho,#omega")
"1/#psi")
"Y(1,2,39)")

"#bf{CMS Open Data}")

"#sqrt{s} = 8 TeV, L_{int} = 11.6 fbA{-1}")

CMS Open Data /s=8TeV,L =1161b"
2 o [‘ Jy
~ U L Y238
10% = | ’ 1
L B - '% |
10° = N !
- Mww‘”ﬂ ‘%
102 “M
f " M
10 =
! ET [Ll L [
1 10 (GeV)

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 13

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html

Benefits of a new binary format:

>

>

>
>

More efficient storage of collections and
boolean values

Addition of new basic types, e.g. f16
Little-endian numbers: memory mappable on
most contemporary platforms

Type-based encoding: e.g. zig-zag for signed
ints, bit packing for bools, etc.

Split storage for arbitrarily nested
collections

More scalable meta-data, better memory
control

New default compression: zstd
Format independent of TFile

Technical Note: RNTuple has its own schema encoding,
independent of the streamer info

KEY: TTree

20231028/012556
20231028/012556
20231028/012556
20231028/012556
20231028/012556
20231028/013026
Address = 12198
20231028/013026
20231028/013026
20231028/013026
20231028/013026
20231028/013026
20231028/013026
20231028/013026
20231028/013026
20231028/013026
20231028/013026

basic2.root
basic2.root

ntuple;1
KEY: ROOT::Experimental: :RNTuple
root [2] _file®@->Map()

At:
At:
At:
At:
At:
At:
Nbytes = -
At:
At:
At:
At:
At:
At:
At:
At:
At:
At:

100
218
4042
7868
11622
IVAKE]

16948
17124
20869
24597
28114
28240
28368
28502
28687
33596

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024

data

N=118
N=3824
N=3826
N=3754
N=511

from ascii file
imported;1

TFile
TBasket
TBasket
TBasket
TTree
FreeSegments

ROOT: :Experimental: :R

KeysList
StreamerInfo
END

object

X
CcX
CcX
CcX
X
X

L | | | A | B ||

.66
.08
.08
.15
.32
.30
Tuple

RNTuple Binary Format

14

ATLAS and RNTuple

Data 2023 - <p> = 62.9 - 2755 events

Towards Getting Production Ready

M RNTuple

B Trree e Being able to read/write our data in RNTuple is a great start!

O ATLAS can read/write all data formats, i.e., HITS, RDO, ESD, AOD, and DAOD in RNTuple!
e However, there are many other features that are needed for production

o Fast merging of RNTuple objects on-the-fly and custom entry/event indexing
m These are primarily needed for the DAOD production workflows

File Size (MB)
w
v

DAOD_PHYS DAOD_PHYSLITE = These jobs run in multi-process Athena where a dedicated process merges worker outputs on-the-fly
o Having various utilities/tools to peek into, compare, validate, ... RNTuples
= These are needed for job configuration, input/output validation etc.

COnclusions and Outlook o Relational RNTuples, a.k.a. friendship
= This allows us to use event sample augmentation
e A Rough RNTuple timeline from ATLAS’ perspective: e In addition, detailed optimizations/stress-testing studies need to be done

© We need to make sure RNTuple works reliably/efficient in all official ATLAS workflows
O We also need to make sure that the data products and the jobs meet production limitations
12

Y We are here!

e The current plan is to adopt RNTuple for (at least) the Event Data for Run 4 RNTup|e adoption for other expe riments
o Discussions on how to handle in-file Meta Data is currently ongoing o .
e All'in all we're in a very good position but there is much work ahead of us! CMS' LHCb and ALICE are. also maklng SUbSt_antlaI .
o All aspects need to be rigorously tested and validated well in advance of Run 4 progress thanks to the tireless efforts, also in collaboration
= Multi-process/thread Athena jobs, complementary tools, benchmarking, and optimizations W|th th e RO OT tea m

Io We're looking forward to all of the fun ahead! |

We are here to support the transition to RNTuple of all
experiments

13

Material from S. Mete, ACAT 2024, some highlighting added
WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 15

https://indico.cern.ch/event/1330797/contributions/5796492/

Convert your existing TTree to RNTuple:

Tooling and Some Code

Get detailed storage information for your RNTuple:

#include <ROOT/RNTuplelmporter.hxx>
using ROOT::Experimental::RNTuplelmporter;

auto importer = RNTuplelmporter::Create(

1

// Optional
importer-> ();
auto writeOptions = importer-> 0;

// Optional, default is zstd level 5

auto algo = RCompressionSetting::EAlgorithm::kLZMA;
writeOptions. (algo, 7);

importer-> (writeOptions);

importer-> (;

#include <ROOT/RNTuplelnspector.hxx>
using ROOT::Experimental::RNTuplelnspector;

auto inspector = RNTuplelnspector:Create(

,);

std::cout <<

<< inspector->

<< std::endl;
inspector-> (;

and

my NanoAOD 1is compressed using lzma (level 7)

column type | count | # elems compr. bytes

SplitIndex64 | 5
SplitReal32 | 45
SplitInt32 | 15

| 267230990 84109056
| 3856668029 | 11402474398
| 1436663181 | 147427186

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024

uncompr. bytes

2137847920
15426672116
5746652724

16

https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html
https://root.cern/doc/master/ntpl008__import_8C.html
https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleInspector.html

RNTuple Metrics

auto tree = file->

<TTree>()

TTreePerfStats *ps = new TTreePerfStats(

// ...
ps-> 0;

, tree);

ReadUnZip
ReadCalls
ReadSize
Readahead
Readextra
Real Time
CPU Time
Disk Time
Disk IO

ReadUZRT
ReadUZCP
ReadRT

ReadCP

30 MBytes

26

749.412 MBytes

1137.82 MBytes

524

1430.176 KBytes/read

256 KBytes

0.00 per cent
2.090 seconds
1.550 seconds
0.724 seconds

1034 .508 MBytes/s

544 .310 MBytes/s

734.076 MBytes/s

358.504 MBytes/s

483.492 MBytes/s

RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.

auto anchor = file->
auto reader = RNTupleReader::Open(anchor);

reader-> 0;
/...
reader-> (ENTuplelnfo::kMetrics);

<RNTuple>();

RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.

nReadV| |number of vector read requests|21

nRead| [number of byte ranges read|834

szReadPayload|B|volume read from storage (required)|731470154

szReadOverhead|B|volume read from storage (overhead)|180996722

szUnzip|B|volume after unzipping|1129407576

nClusterlLoaded| |number of partial clusters preloaded from storage|21

nPagelLoaded| |[number of pages loaded from storage|17175

nPagePopulated| |number of populated pages|17175

timeWallRead|ns|wall clock time spent reading|337259128

timeWallUnzip|ns|wall clock time spent decompressing|527901157

timeCpuRead|ns|CPU time spent reading|1355967000

timeCpuUnzip|ns|CPU time spent decompressing|1373490000

bwRead |MB/s|bandwidth compressed bytes read per second|2705.536486

bwReadUnzip|MB/s|bandwidth uncompressed bytes read per second|3348.782827

bwUnzip|MB/s|decompression bandwidth of uncompressed bytes per second|2139.430007

rtReadEfficiency||ratio of payload over all bytes read|0.801640
pression||ratio of compressed bytes / uncompressed bytes|0.647658

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 17

Parallel Writing: Application Benchmark

» Skimming of the "Analysis Grand Challenge" (AGC)
dataset

e Drop unused columns

e Filter events based on coarse cuts and entries in 161
nested collections

32

» Compare multiple implementations of parallel % 81
writing 2
e Using ROOT's implicit multithreading (IMT) gl
e Separate files + merging with hadd 2|

TBufferMerger (in-memory merging)
Parallel RNTuple writing

- x- application scaling limit
—x- geq. writing (with IMT)
-+-separate files

—e— files merged with hadd
-~ TBufferMerger

—— parallel writing

» Parallel RNTuple writing as fast as independent 1 2
writing into separate files

| |
4 8 16 32 64 128
threads

e Reaches 330 MB/s, below hardware limit: RNTuple makes leading

parallel writing is not the bottleneck!

edge R&D possible

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024

18

RNTuple Validation and Limit Testing

Joint effort between IT-SD and EP-SFT on large-scale testing
» IT provided testbed: 80 nodes, 20PB storage, 100GbE
» Quick cycles of benchmarking and software improvements on ROOT and XRootD

e First numbers with the "Analysis Grand Challenge" (a community standard benchmark) confirm
the speed improvements of RNTuple when reading from EOS with high core counts (see plot)

e workload variations
» Next steps during summer months

Wallclock time

e Tests with experiment-provided tasks e]e T T T

» Target for final results: CHEP; contribution submitted . 5 el
t ° e RNTuple from EOSCMS :m?
RNTuple Interface Review ") ; t . : gﬂ:z:: :22 E‘iif'm g
» Conducted by US High Energy Physics Center for p 1 g ! 5
Computational Excellence (HEP-CCE) = : I 3 <
» Including Experiment experts form ATLAS, CMS & DUNE G . ; [g’,
» Final report expected in Q3/2024 107 4 ED) g
Thanks!! S

10° 10! 10?
U

-
ATLAS

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 19

Planning and Schedule

RNTuple Type Support

RNTuple Status

Type Class Types EDM Coverage

bool, (unsigned) char, std::byte,
PoD (g) y

(u)int[8,16,32,64] t, float, double Flat n-
.. .. tupl
(Nested) vectors éti.{:?cZo%, RVec, std::array, uple Rei
-Style Tixed-size arrays AOD
String std::string

User-defined classes [Non-cyclic classes with dictionaries

User-defined enums | Scoped / unscoped enums with dictionaries Fulg QE())E) /
User-defined collections Non-associative collection proxy RECO

std::atomic, std::pair, std::tuple,
stdlib types std::bitset, std:: (unordered)set,

std:: (unordered)map

td:: i t, std:: i tr,

Alternating types ° Var%an ° anraue_ptE

std::optional
Unsplit All ROOT streamable objects (stored as byte array)
Intra-event links "sElectrons[7]" post version 1.0

Double32 t, Floatl6 t, (b)floatl6 _

Optimization benefitting all EDMs |ongoing work / v1.0

Low-precision
floating points Custom precision and range

Precision cascades post version 1.0
WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 21

Schedule Presented to the LHCC, Updated

~2018-19 ~2019-20 ~2021-22 ~2022-23 ~2023-24
Proof of First Pre- :
Prototype o ! Production
concept exploitation production
Architecture Adoption in Object store support RDataFrame PB scale tests
Review on __ROOT::Experimental DAOS (HPC) bulk processing # Automatic optimization
state-of-the-art 1/0 scheduler for S3 (Cloud) Debugging and features

First prototypes

= available
= under development
= programme of work
— =in collaboration with
users/experiments

Work items defined: Nov 2021
Development state: May 2024

local and remote
~_access

Performance
validation

RNTuple version 1 spec
RNTuplelLite
~ Schema evolution
Disk-to-disk conversion
Virtual data sets for
__skims and selections
First exposure to
frameworks:
CMSSW nanoAOD
__output module
Prototyping by
ATLAS, CMS, LHCb
I/O experts

inspection tools
Metadata API
Special use case
support: e.g. backfill,
__in-memory adapters
XRootD support
Validation of
feature coverage
Training experiments’
core developers
Large-scale
experiment
benchmarks

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024

Low-precision floats

ML Training: direct GPU
transfer

End-user training
Training and support for
code and data migration

22

Potential Future Directions

The RNTuple design opens the door to new functionality, which can be

worked on after the initial production release.

For example:

» Horizontal fast merge ("persistified friends")

» Zero-copy merge on copy-on-write file systems

» Better metadata support (e.g. scale factors, varied columns)

» Layout optimizer that rewrites a file for strictly linear reads

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 23

Conclusions

Conclusions

TTree has been extremely successful in the last 25y: it remains available & supported

Building on top of the experience accumulated so far, RNTuple is being developed to scale into
the HL-LHC era (and beyond)

e Adrop-in replacement for analysis, not for fwks. Many benefits to balance this downside
Golden opportunity for leading edge R&D, e.g. parallel writing, object store support, low level hw
optimisations

A solid plan ahead, agreed with experiments, monitored continuously, results and features
are being delivered

v1.0 due at the end of 2024: fix file format on disk, still evolving interfaces

Adoption by experiments progressing quickly, thanks to the effort of the core software teams,

fully supported by the ROOT team

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 25

Backup

RNTuple Classes Design

Event iteration
Reading and writing in event loops and through RDataFrame
RNTupleDataSource, RNTupleView, RNTupleReader/Writer

General coding guidelines

» Following C++ core guidelines

Use of exceptions (RException)

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int,...)
grouped into (compressed) pages and clusters
RColumn, RColumnElement, RPage

Conditionally thread-safe

v v VY

Compile-time type-safe interfaces, runtime type-

Storage layer / byte ranges

. i
RPageStorase, Reliever. RNTooleDescriptor safe interfaces and void* interfaces

» Shared pointers for values to be (de-)serialized

rApproximate translation between TTree and
RNTuple classes:

TTree

14

RNTupleReader e With option to pass raw pointes

RNTupleWriter
RNTupleView
RField

RPage
RClusterPool

TTreeReader
TBranch
TBasket
TTreeCache

onoun

WLCG/HSF Workshop 2024 - D. Piparo, CERN EP-SFT - 15.5.2024 27

