
The Gaussino core simulation software

Marco Clemencic , Gloria Corti , Michał Mazurek ,
Adam Morris , Witold Pokorski

CERN, NCBJ

WLCG/HSF Workshop, DESY, 2024-05-14

Some history

Gauss: the LHCb simulation application [Old docs]

• Generates events using external packages (e.g. Pythia8, EvtGen, . . .)
• Simulates interactions with the detector with Geant4
• First production version in 2004
• Based on the Gaudi software framework [gaudi/Gaudi]

A need to upgrade the software
• Need for code optimisation
• Reduce memory usage
• Adapt to changes in LHCb & HEP common software
• Support multi-threading
• Support fast simulation techniques

1/28

https://lhcbdoc.web.cern.ch/lhcbdoc/gauss/
https://gitlab.cern.ch/gaudi/Gaudi

Gaussino

Main idea
• Extract the experiment-independent functionality from Gauss
• Developed in collaboration with CERN EP-SFT
• Standalone application with minimal functionality
• Toolkit for building experiment-specific applications

Features kept from Gauss
• Similar modularity
• Integrated gen and sim phases
• MC truth output
• Gaudi algorithms, tools etc
• High-level configuration in python

New features
• Multi-threaded event loop in Gaudi
• Multi-threaded Geant4
• Interface for custom simulation with Geant4
• Interface to new external libraries

• e.g. DD4Hep (detector description)
• e.g. Machine Learning libraries

gaussino.docs.cern.ch GitLab repository
2/28

https://gaussino.docs.cern.ch/
https://gitlab.cern.ch/Gaussino/Gaussino/

From initial design to full-scale production

Standalone Gaussino (out-of-the-box) [Docs]

• Generate collisions with Pythia8 or shoot individual
particles with ParticleGun

• Choose from a set of Geant4 physics lists
• Define simple detector geometry in the configuration or
provide DD4hep or GDML files

Gauss on Gaussino [Docs] [lhcb/Gauss]

• LHCb simulation application built on top of
Gaussino, adding the experiment-specific parts

• Not the focus of this talk but a comprehensive
example of using Gaussino as a toolkit

3/28

https://gaussino.docs.cern.ch/master/getting_started/first_simulation_job.html
https://lhcb-gauss.docs.cern.ch/master/
https://gitlab.cern.ch/lhcb/Gauss

Generation and Simulation phases

4/28

Configuration

• Python configuration steering C++ classes
• Modular structure with 4 main configurables

5/28

Generation phase

• Extracted from Gauss
• Highly modular
• Output in HepMC3 format

[Talk by A. Verbytskyi]

• Interface for Pythia8 included

6/28

https://indico.cern.ch/event/1369601/contributions/5898657/

Generator interface developments

• Ongoing developments to allow
fine-grained control over different
stages of generation

• More control in the python
configuration with the new interfaces

• Design choice influenced by what
generators provide as user hooks

• LHE as exchange format

Hard process

Underlying
event

Initial state
shower

Final state
shower

Hadronisation

Non-perturb.
interactions

Decays

7/28

Generator interface developments

• Ongoing developments to allow
fine-grained control over different
stages of generation

• More control in the python
configuration with the new interfaces

• Design choice influenced by what
generators provide as user hooks

• LHE as exchange format

Hard process

Underlying
event

Initial state
shower

Final state
shower

Hadronisation

Non-perturb.
interactions

Decays

7/28

Generator interface developments

• Ongoing developments to allow
fine-grained control over different
stages of generation

• More control in the python
configuration with the new interfaces

• Design choice influenced by what
generators provide as user hooks

• LHE as exchange format

Hard process

Underlying
event

Initial state
shower

Final state
shower

Hadronisation

Non-perturb.
interactions

Decays

7/28

Thread-safe generators

Multi-threading with single-threaded generators
Two approaches:

• Thread-local instance if supported by generator
• Shared instance

0 5 10 15 20 25 30 35 40
Number of threads

5

10

15

20
Th

ro
ug

hp
ut

 [s
1] LHCb Simulation Preliminary

Gauss v60r1
Generator only
pp-collisions @

√
s = 14 TeV

L = 2 ·1033 cm 2s 1

Pythia8 (shared)
Pythia8 (thread-local)

Pythia8 in LHCb Run 3 conditions
8/28

Simulation phase

• Re-implementation with improved modularity
• Interaction with Geant4
• Infrastructure for:

• custom simulation
• re-use underlying event
• parametric (ultra-fast) sim+reco [CHEP 2023]

• Generic geometry service

9/28

https://indico.jlab.org/event/459/contributions/11454/

Interface with Geant4

• Gaudi tools as factories for Geant4 objects

Multi-threaded Geant4
• Gaudi works with task-based multithreading
• Geant4 10 has event-based multithreading

• → control Geant4 processes ourselves
• reimplementation of G4EventManager to
allow Gaudi to take control

• Geant4 11 introduces task-based MT
• Need to investigate how to incorporate this

0 5 10 15 20 25 30 35 40
Number of threads

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 [s

1] LHCb Simulation Preliminary
Gauss v60r1 with Geant4 v10.7.3
Detailed Simulation
pp-collisions @

√
s = 14 TeV

L = 2 ·1033 cm 2s 1

Run3 (2022) detector / DetDesc, Pythia8(shared)
Run3 (2022) detector / DetDesc, Pythia8(thread-local)
Run2 (2016) detector/ DetDesc, Pythia8(shared)
Run2 (2016) detector / DetDesc, Pythia8(thread-local)

Geant4 10.7 in LHCb Run 3 conditions
10/28

Custom simulation

Delegate simulation of certain
particles in a region of the
detector to e.g.
• Point library for calorimeters
• Machine learning models (e.g. GANs)
• Particle transport on GPUs

• Use Geant4’s fast simulation hooks
• Full-detector transport via physics list

11/28

Custom simulation: Parametric simulation

Point libraries [ICHEP 2020]

• Library of energy deposits extracted from detailed simulation
• Transform based on the properties of the impinging particle

12/28

https://indico.cern.ch/event/868940/contributions/3814342/

Custom simulation: Parametric simulation

Machine learning [CHEP 2023]

• Train generative models on output of Geant4
• Produce hits from those models during production
• Interfaces for ONNXRuntime & PyTorch backends
• Supports CaloChallenge workflow [Docs]

• train on experiment-agnostic data
• compare models objectively
• retrain chosen model on target geometry

[Diagram credit: M. Bagheri]
13/28

https://indico.jlab.org/event/459/contributions/11528/
https://calochallenge.github.io/homepage/
https://medium.com/@ma.bagheri/a-tutorial-on-conditional-generative-adversarial-nets-keras-implementation-694dcafa6282

Custom simulation: Accelerated particle transport

Offload certain physics processes to different computing architecture

Electromagnetic physics on GPUs
• AdePT[]: ongoing work to integrate in Gaussino

• will provide guidelines for integrating the others

• Celeritas[]: preliminary studies

Optical photons on GPUs
• Mitsuba[]: preliminary studies, developed outside HEP

14/28

https://github/apt-sim/AdePT
https://github/celeritas-project/celeritas
https://github/mitsuba-renderer/mitsuba3

Event splitting & merging

• Mechanism for selectively simulating parts of an event and merging the output
• Proven track-record in LHCb for greatly reducing computing time spent in Geant4
• Currently has two implementations (ReDecay & SplitSim) but could be extended

ReDecay[EPJC (2018) 78:1009]

• Re-use same underlying event for
many signal decays

• Particularly useful when the
production mechanism is not
studied
• e.g. Beauty & Charm decays

SplitSim
• Simulate part of the event before
applying a cut

• Efficient filtering on material
interactions or particles decayed
by Geant4
• e.g. Converted photons
• e.g. Rare K0

S decays

15/28

https://doi.org/10.1140/epjc/s10052-018-6469-6

Geometry

Generic service to steer passing of information to Geant4 from different backends:

• DD4Hep [Docs] [Talk by T. Madlener]

• Import & export of GDML files
• Custom service for “internal” volumes of simple shapes: ExternalDetector

16/28

https://dd4hep.web.cern.ch/dd4hep/
https://indico.cern.ch/event/1369601/contributions/5883605/

Geometry: ExternalDetector

• Provides necessary tools to embed volumes and mark as sensitive

• Works stand-alone, or can be mixed with other services
• Wrapper classes around G4VSolid, easily extensible
• Factory classes to create G4Materials based on
chemical properties or elements

• Can attach hit extraction and monitoring algorithms
• Supports Geant4 parallel worlds [Docs]

Tracker planes created with
CuboidEmbedder (G4Box)

17/28

https://www.geant4.org/collaboration/working_groups/geometryTransport/docs/parnav/parallel-navigation.html

Visualisation

Visualisation in Geant4 is a crucial part of verifying the geometry after conversion

Dedicated steering in Gaussino due to Gaudi & Geant4 multi-threading interplay:

• Visualisation has its own thread
• Information exchange at the right time

Two options implemented:

• Native Geant4 visualisation drivers
• Phoenix event display

18/28

Visualisation

Geant4 visualisation drivers
• Available at run time
• Volume overlap checks possible
• Geant4 data only
• Drivers: ASCIITree, OpenGL, DAWN,
HepRep

19/28

Visualisation

Phoenix event display [Talk by E. Moyse]

• Available as external tool
• Supports a variety of geometry and
event formats
• GDML must be converted to e.g. glTF
• Internal JSON format for event data
if not using a supported one

• Possible to compare simulated and
reconstructed data

20/28

https://indico.cern.ch/event/1369601/contributions/5867781/

Monitoring & Output

Various persistent output formats possible with pre-defined contents:

• Built-in event model
• Consistent MC truth: combined info from generator and Geant4

• Choice of details to keep

• Histograms
• Counters
• Custom n-tuples

21/28

Gaussino as a standalone application

Configuration
One or more python scripts that manipulate the 4 configurable objects:

• Gaussino
• GaussinoGeneration
• GaussinoSimulation
• GaussinoGeometry

Execution
Invoke with:

gaudirun.py options.py [options2.py] [...]

22/28

Gaussino as a standalone application

Basic configuration

General imports
from Configurables import Gaussino, GaussinoGeneration, GaussinoSimulation, GaussinoGeometry
from GaudiKernel import SystemOfUnits as units
Specify number of events
Gaussino().EvtMax = 1000
Run number informs random seed
Gaussino().RunNumber = 1234
Set even numbers (useful when splitting into multiple jobs)
Gaussino().FirstEventNumber = 3001
Specify which phases to run
Gaussino().Phases = ["Generator", "Simulation"]

Multi-threading

Gaussino().EnableHive = True,
Gaussino().ThreadPoolSize = 4
Gaussino().EventSlots = 4

23/28

Gaussino as a standalone application

ParticleGun

Configure ParticleGun to produce 1 GeV photons
from Configurables import ParticleGun, FixedMomentum, \
FlatNParticles

GaussinoGeneration().ParticleGun = True
pgun = ParticleGun("ParticleGun")
pgun.addTool(FixedMomentum, name="FixedMomentum")
pgun.ParticleGunTool = "FixedMomentum"
pgun.FixedMomentum.px = 0.0 * units.GeV
pgun.FixedMomentum.py = 0.0 * units.GeV
pgun.FixedMomentum.pz = 1.0 * units.GeV
pgun.FixedMomentum.PdgCodes = [22]
pgun.addTool(FlatNParticles, name="FlatNParticles")
pgun.NumberOfParticlesTool = "FlatNParticles"
pgun.FlatNParticles.MinNParticles = 1
pgun.FlatNParticles.MaxNParticles = 1

Pythia8

Configure Pythia8 to produce proton-proton collisions
GaussinoGeneration(

Choose the Gaudi tools to configure the generator
NB: tool-specific options can be passed here
SampleGenerationTool = "MinimumBias",
ProductionTool = "Pythia8ProductionMT",
PileUpTool = "FixedLuminosityWithSvc",
Set the beam configuration (approx. 2023 LHCb)
B1Particle = "p",
B2Particle = "p",
BeamMomentum = 6.8 * units.TeV,
BeamEmittance = 0.01845 * units.mm,
BeamBetaStar = 2.0 * units.m,
BunchRMS = 63.36 * units.mm,
Luminosity = 1.75e29 / (units.cm2 * units.s),
TotalCrossSection = 102.5 * units.millibarn,
RevolutionFrequency = 11.245 * units.kilohertz,
Crossing angle and interaction point
InteractionPosition = [0.0] * 3,
BeamHCrossingAngle = -0.145 * units.mrad,
BeamVCrossingAngle = +0.200 * units.mrad,
BeamLineAngles = [0.0, 0.0],

) 24/28

Gaussino as a standalone application

Particle transport & detector simulation

Geant4 physics lists
GaussinoSimulation().PhysicsConstructors += [

"G4EmStandardPhysics",
"G4HadronPhysicsFTFP_BERT",

]

Custom simulation
GaussinoSimulation().CustomSimulation = "MeshModelSimulation"
customsim = CustomSimulation("MeshModelSimulation")
customsim.Model = { # Which custom simulation model to use

"MeshModel": {
"Type": "Gaussino__G4Par04__MeshModelFactory",

}
}
customsim.Region = { # Which region to delegate

"MeshModel": {
"SensitiveDetectorName": "CollectorSDet",

}
}
customsim.Physics = { # Which particles to delegate

"ParticlePIDs": [22, 11, -11],
} 25/28

Gaussino as a standalone application

Detector geometry

from Configurables import ExternalDetectorEmbedder
from ExternalDetector.Materials import LEAD

Create the geometry service
GaussinoGeometry().ExternalDetectorEmbedder = "ExternalDetectorEmbedder"
external = ExternalDetectorEmbedder("ExternalDetectorEmbedder")
Materials
external.Materials = {

"G4_AIR": {"Type": "MaterialFromNIST"},
"Pb": LEAD,

}
Define the surrounding world
external.World = {

"WorldMaterial": "G4_AIR",
"Type": "ExternalWorldCreator",

}

e.g. a 1 m3 cube of lead at z=10 m surrounded by air

Define a simple shape
external.Shapes = {

"CubeOfLead": {
"Type": "Cuboid",
"MaterialName": "Pb",
"xPos": 0 * units.m,
"yPos": 0 * units.m,
"zPos": 10.0 * units.m,
"xSize": 1.0 * units.m,
"ySize": 1.0 * units.m,
"zSize": 1.0 * units.m,

},
}
Mark sensitive
external.Sensitive = {

"CubeOfLead": {
"Type": "MCCollectorSensDet",
"PrintStats": True,

},
}

26/28

Gaussino as a toolkit

Gaussino as the basis for a fully-fledged experiment-specific simulation application

Gauss-on-Gaussino [Docs] [lhcb/Gauss]

• LHCb simulation application
• Adds experiment-specific components and configuration

• LHCb event model
• Customised generators & EvtGen
• DD4hep & DetDesc (legacy) descriptions of LHCb
throughout the years

• Subdetector-specific monitoring

• Ongoing production tests on the grid
• Aim to use for all LHCb simulations in the future
including pre-Upgrade I (Runs 1 and 2)

• Already used in Upgrade II (Run 5) studies

Dependency structure

Geometry dependencies

27/28

https://lhcb-gauss.docs.cern.ch/master/
https://gitlab.cern.ch/lhcb/Gauss

Conclusion

Gaussino provides:

• an experiment-independent core simulation framework
• ✓ easy configuration in python
• ✓ modular generator and detector simulation phases
• ✓ support for custom simulation
• ✓ internal geometry service

• a test-bed for detector developments
• a test-bed for new simulation techniques
• a toolkit for full-scale experiment-specific simulation software

gaussino.docs.cern.ch GitLab repository
28/28

https://gaussino.docs.cern.ch/
https://gitlab.cern.ch/Gaussino/Gaussino/

Appendix

Random numbers

• Ensure reproducibility
• Seed initialised with

• run number
• event number
• algorithm instance name

• Create random engines on the stack

Generator performance

0 5 10 15 20 25 30 35 40
Number of threads

0

200

400

600

Th
ro

ug
hp

ut
 [s

1] Gaussino Preliminary
Gaussino v0r1, single interaction
Generator only

√
s = 13 GeV, Pythia8 (shared)√
s = 13 GeV, Pythia8 (thread-local)√
s = 7 GeV, Pythia8 (shared)√
s = 7 GeV, Pythia8 (thread-local)√
s = 3 GeV, Pythia8 (shared)√
s = 3 GeV, Pythia8 (thread-local)√
s = 1.8 GeV, Pythia8 (shared)√
s = 1.8 GeV, Pythia8 (thread-local)

Simulation performance

0 5 10 15 20 25 30 35 40
Number of threads

0

50

100

150

200

250

300
Th

ro
ug

hp
ut

 [s
1] Gaussino Preliminary

Gaussino v0r1 standalone with Geant4 v10.7.3

Cylindrical Calorimeter
Detailed Simulation

E = 64 GeV
E = 32 GeV
E = 16 GeV
E = 8 GeV
E = 4 GeV
E = 2 GeV
E = 1 GeV

Generic ML interface

ML model serving
• Use Gaudi services
• Handle loading of the model
• Accessible throughout the whole execution
• Set general properties

ML model evaluation
• Use Gaudi tools and algorithms
• Pass the random generator seed to ensure reproducibility
• Fixed or automatic types for inputs & outputs

	Introduction
	The framework
	Generation
	Simulation
	Geometry
	Monitoring
	Standalone
	Gauss
	Conclusion
	Appendix

