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The LHCb dataflow

Figure from HLT1 TDR
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https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf


The event builder / HLT1 farm

Figure from HLT1 TDR
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https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf


Real time analysis

HLT1 tasks (as in the TDR):

• Decoding of binary rawbanks

from each sub-detector

• Reconstuction of charged

particles trajectories

• Identification of electron and

muon particles

• Reconstruction of primary

and particle decay vertices

• Selection of proton-proton

bunch collisions (events) to

store in buffer
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https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf


HLT1 commissioning

Timeline:

• 2022: little data, mostly dedicated to commissioning

• 2023: vaccum incident in LHCb Velo and UT not yet installed

• 2024: data not yet approved, comming soon

HLT1 adapted successfully to each new issue:

• developped a new sequence capable of reconstructing long tracks without the UT

• re-tuned the selections with a VELO not fully closed
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D0 → K−π+ HLT1 mass plots (2022)

LHCb-FIGURE-2023-009
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HLT1 on GPUs: The Allen framework

Quick tour:

• Multi-stream, multi-event batches

• Static sequence scheduler

• Dynamic stream-ordered memory allocator with statically known lifetime

• Minimal impact monitoring

• Fully deterministic algorithms (ie. non-deterministic operations have no impact

on output)

• Hand optimized kernels

• Emulation through compiler macros for CPU targets
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Multi-level parallelism

• Each node of HLT1 contains multiple GPUs

• Each GPU is attributed to one Allen instance
• An Allen instance runs multiple streams (configurable, typically 16)

• A stream has one CPU thread taking care of the scheduling, dynamic
memory allocations and host algorithms.

• All kernels from an Allen Stream runs in the same CUDA stream
(sequentially) ⇒ multiple kernels from different streams runs concurently
on the GPU to ensure full resource utilisations

• Each stream process a slice of events (configurable, typically 500)

• Each algorithm is free to choose how to parallelise over the slice of events. A

common pattern is to assign one cuda block to one event and each threads to

the objects (hits, tracks, ...) that are processed.
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Static scheduling and dynamic allocations

• The dataflow graph representing each sequence is linearized into a sequence that

respect the data dependencies

• The lifetime of each buffer is pre-computed and stored for the allocations

• Allocations can be dynamic but only between kernels (we don’t do any

allocations inside a kernel)

• A common pattern is to calculate or estimate the buffer size in a first kernel,

then run a prefix sum on the array of sizes to get the offsets of each event,

allocate the buffer and then run the kernel that fill the buffer. ⇒ since prefix

sums are widely used, special care was taken to optimise the algorithm, allowing

up to 8% throughput gain in some sequences.
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Prefix sum on GPU

• We have a lot of prefix sums of
various size to do in a typical
sequence:

• O(103) events per slice
• O(105) tracks per slice
• O(106) hits per slice

• Different algorithms based on the

data size.

• Based on Blelloch’s scan

• Exploit GPU memory hierarchy
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Prefix sum - throughput

(Algorithms evaluated on synthetic data)
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Running selections

Selections are very different from reconstruction algorithms:
• Reconstruction algorithms:

• Large kernels
• Very sequential (one kernel run after the other)
• Written by GPU experts

• Selection algorithms:
• Very small kernels (launch cost become significant)
• Embarasingly parallel (O(80) different and independent lines)
• Written by anyone

We mitigate selection kernel launch cost using CUDA dynamic parallelism to run all

selections concurrently (we launch kernels from a parent kernel). First attempt was

using template metaprogramming to run every lines in the same kernel, using dynamic

parallelism provided a 10% throughput improvement.
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Allen Monitoring

Monitoring is a crucial part of the trigger. Since we throw away 29/30 of the data, the

monitoring plots are needed to understand system performance in real-time.

Figure from LHCb status report at LHCC open session
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https://indico.cern.ch/event/1316071/contributions/5535784/attachments/2713418/4720009/LHCC_092023_ENIE_final.pdf


Allen Monitoring, first version (2022-2023)

• Simple implementation: each algorithm responsible for allocating histogram

buffers, filling them using atomics and transfering back to host where they are

merged with a Gaudi Accumulator (one instance per stream)

• Gaudi Monitoring take care of merging accumulators from different streams

periodically

• Worked well! ... Until we had a closer look at throughput in data taking

conditions. We found that monitoring cost O(10%) of our throughput.

• Why? Transfering many small buffers (one per histogram / counter) for every

event slice, for every stream was creating a lot of pressure on the DMAs.

• The solution was to rewrite the whole monitoring system from scratch.
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Allen Monitoring (v2)

• Interfaced with Gaudi Monitoring (which takes care of the aggregation of

different nodes and the presenting)

• Supports counters and ND-histograms (design based on Gaudi Accumulators and

adapted to GPU ⇒ familiar API)

• Aggregation is done on device: buffers are shared between streams and written

to using atomics

• Buffers are persisted on device for multiple slices and periodically transfered to

host, using double-buffering so the streams are never interrupted

• All monitoring allocations are static and done once for host and device, at

configuration time.

• Now the throughput cost is negligeable.
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The importance of optimisations

• We are on a budget ! currently 330 x A5000 GPUs installed in the EB farm.

Room for a bit more but not much.

• Target throughput per card: 90 kEvts/s (to reach 30MHz, actual event rate

closer to 25-26MHz)

• The baseline system described in the TDR worked very well, allowing to add a

lot of new features (calorimeter reconstruction, removing the global event cut,

low momentum track reconstruction, secondary vertices with 3 daughter

particles, to cite a few..)

• Given theses additions, we are tight on throughput that we continue to improve

to fit even more.

• Every throughput % and byte of memory counts, we must use every trick in the

GPU programming book, and invent new ones...
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Conclusion

• We had a successful data-taking with an all-software trigger system in 2022-2024

and are still improving it.

• Writting real time analysis software that runs at 30 MHz is challenging.

• Entry barrier for GPU programming is relatively low, but getting every bit of

performance requires a deep understanding of the architecture, that is only

acquired through years of experimentation.

• Good developpement tools are essential: profilers, monitoring counters,

continuous integration, framework..

• There is no one-to-all solutions.

Thank you!
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