
Experiences on the software performance of

LHCb’s first level trigger
Arthur Hennequin – arthur.hennequin@cern.ch
On behalf of the RTA team

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 1



The LHCb dataflow

Figure from HLT1 TDR

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 2

https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf


The event builder / HLT1 farm

Figure from HLT1 TDR

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 3

https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf


Real time analysis

HLT1 tasks (as in the TDR):

• Decoding of binary rawbanks

from each sub-detector

• Reconstuction of charged

particles trajectories

• Identification of electron and

muon particles

• Reconstruction of primary

and particle decay vertices

• Selection of proton-proton

bunch collisions (events) to

store in buffer

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 4

https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf


HLT1 commissioning

Timeline:

• 2022: little data, mostly dedicated to commissioning

• 2023: vaccum incident in LHCb Velo and UT not yet installed

• 2024: data not yet approved, comming soon

HLT1 adapted successfully to each new issue:

• developped a new sequence capable of reconstructing long tracks without the UT

• re-tuned the selections with a VELO not fully closed

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 5



D0 → K−π+ HLT1 mass plots (2022)

LHCb-FIGURE-2023-009

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 6



HLT1 on GPUs: The Allen framework

Quick tour:

• Multi-stream, multi-event batches

• Static sequence scheduler

• Dynamic stream-ordered memory allocator with statically known lifetime

• Minimal impact monitoring

• Fully deterministic algorithms (ie. non-deterministic operations have no impact

on output)

• Hand optimized kernels

• Emulation through compiler macros for CPU targets

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 7



Multi-level parallelism

• Each node of HLT1 contains multiple GPUs

• Each GPU is attributed to one Allen instance
• An Allen instance runs multiple streams (configurable, typically 16)

• A stream has one CPU thread taking care of the scheduling, dynamic
memory allocations and host algorithms.

• All kernels from an Allen Stream runs in the same CUDA stream
(sequentially) ⇒ multiple kernels from different streams runs concurently
on the GPU to ensure full resource utilisations

• Each stream process a slice of events (configurable, typically 500)

• Each algorithm is free to choose how to parallelise over the slice of events. A

common pattern is to assign one cuda block to one event and each threads to

the objects (hits, tracks, ...) that are processed.

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 8



Static scheduling and dynamic allocations

• The dataflow graph representing each sequence is linearized into a sequence that

respect the data dependencies

• The lifetime of each buffer is pre-computed and stored for the allocations

• Allocations can be dynamic but only between kernels (we don’t do any

allocations inside a kernel)

• A common pattern is to calculate or estimate the buffer size in a first kernel,

then run a prefix sum on the array of sizes to get the offsets of each event,

allocate the buffer and then run the kernel that fill the buffer. ⇒ since prefix

sums are widely used, special care was taken to optimise the algorithm, allowing

up to 8% throughput gain in some sequences.

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 9



Prefix sum on GPU

• We have a lot of prefix sums of
various size to do in a typical
sequence:

• O(103) events per slice
• O(105) tracks per slice
• O(106) hits per slice

• Different algorithms based on the

data size.

• Based on Blelloch’s scan

• Exploit GPU memory hierarchy

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 10



Prefix sum - throughput

(Algorithms evaluated on synthetic data)

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 11



Running selections

Selections are very different from reconstruction algorithms:
• Reconstruction algorithms:

• Large kernels
• Very sequential (one kernel run after the other)
• Written by GPU experts

• Selection algorithms:
• Very small kernels (launch cost become significant)
• Embarasingly parallel (O(80) different and independent lines)
• Written by anyone

We mitigate selection kernel launch cost using CUDA dynamic parallelism to run all

selections concurrently (we launch kernels from a parent kernel). First attempt was

using template metaprogramming to run every lines in the same kernel, using dynamic

parallelism provided a 10% throughput improvement.

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 12



Allen Monitoring

Monitoring is a crucial part of the trigger. Since we throw away 29/30 of the data, the

monitoring plots are needed to understand system performance in real-time.

Figure from LHCb status report at LHCC open session

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 13

https://indico.cern.ch/event/1316071/contributions/5535784/attachments/2713418/4720009/LHCC_092023_ENIE_final.pdf


Allen Monitoring, first version (2022-2023)

• Simple implementation: each algorithm responsible for allocating histogram

buffers, filling them using atomics and transfering back to host where they are

merged with a Gaudi Accumulator (one instance per stream)

• Gaudi Monitoring take care of merging accumulators from different streams

periodically

• Worked well! ... Until we had a closer look at throughput in data taking

conditions. We found that monitoring cost O(10%) of our throughput.

• Why? Transfering many small buffers (one per histogram / counter) for every

event slice, for every stream was creating a lot of pressure on the DMAs.

• The solution was to rewrite the whole monitoring system from scratch.

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 14



Allen Monitoring (v2)

• Interfaced with Gaudi Monitoring (which takes care of the aggregation of

different nodes and the presenting)

• Supports counters and ND-histograms (design based on Gaudi Accumulators and

adapted to GPU ⇒ familiar API)

• Aggregation is done on device: buffers are shared between streams and written

to using atomics

• Buffers are persisted on device for multiple slices and periodically transfered to

host, using double-buffering so the streams are never interrupted

• All monitoring allocations are static and done once for host and device, at

configuration time.

• Now the throughput cost is negligeable.

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 15



The importance of optimisations

• We are on a budget ! currently 330 x A5000 GPUs installed in the EB farm.

Room for a bit more but not much.

• Target throughput per card: 90 kEvts/s (to reach 30MHz, actual event rate

closer to 25-26MHz)

• The baseline system described in the TDR worked very well, allowing to add a

lot of new features (calorimeter reconstruction, removing the global event cut,

low momentum track reconstruction, secondary vertices with 3 daughter

particles, to cite a few..)

• Given theses additions, we are tight on throughput that we continue to improve

to fit even more.

• Every throughput % and byte of memory counts, we must use every trick in the

GPU programming book, and invent new ones...

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 16

https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf


Conclusion

• We had a successful data-taking with an all-software trigger system in 2022-2024

and are still improving it.

• Writting real time analysis software that runs at 30 MHz is challenging.

• Entry barrier for GPU programming is relatively low, but getting every bit of

performance requires a deep understanding of the architecture, that is only

acquired through years of experimentation.

• Good developpement tools are essential: profilers, monitoring counters,

continuous integration, framework..

• There is no one-to-all solutions.

Thank you!

May 16th, 2024 Experiences on the software performance of LHCb’s HLT1 17


