
A Large Ion Collider Experiment

Multi-core resources management in

ALICE

L. Betev, M. Litmaath

May 15, 2024 WLCG Workshop @DESY, Operations

session 1

Single core - multi core

A Large Ion Collider Experiment

2

● ALICE upgraded the detector and software for Run3/4
○ Full rewrite of the online and offline software - multi core + GPUs

○ Full rewrite of the top-level Grid software stack - from AliEn to

JAliEn

● Main challenges from Grid perspective
○ Assure smooth transition from single to multi core payloads, while

keeping full support for legacy software

○ Make the transition as simple as possible for both the ALICE

users and Grid sites - keep the interfaces to the Grid and on the

sites unchanged

Update of the Job Agent model

A Large Ion Collider Experiment

3

● Simple life pre-Run3

○ One JA, one job on a single core, one user per JA

● Now

○ Anything from single to 8 core jobs in the queue for standard workflows + higher

number of cores for GPU-enabled workflows (CTF reconstruction)

○ Multiple users could be combined in the same batch slot

○ The above must work in a standard multicore queue (8-cores) on the Grid

○ The mixed-cores-job functionality should be achieved on central task queue and JA

level

Very simplified JA functionality - core matching

A Large Ion Collider Experiment

4

Central job queue

Job 1, User A, requires 1 core

Job 2, User B, requires 2 cores

Job 3, User C, requires 4 cores

Job 4, User C, requires 8 cores

Job 5, User A, requires 1 core

…etc…

● Not in the picture - matching on priorities, expected run time,

memory requirements, data location, software versions

JobAgent on site Y, 8

core slot

Job 1, User A, assigned 1 core

Job 2, User B, assigned 2 cores

Job 3, User C, assigned 4 cores

Job 5, User A, assigned 1 cores

…8-core slot is full…

JobAgent on site Z, 8

core slot

Job 4, User C, assigned 8 cores

…8-core slot is full…

Additional considerations

A Large Ion Collider Experiment

5

● Different job requirements -

every job is running in its

own container
○ EL7, EL8, EL9 + custom

containers with GPU

enabled

● Non-uniformity of site

resources, especially

memory
○ Memory and CPU control

of the payload - use of

cgroups v2, taskset in

production (and wherever

available)

Why 8-core is not the best solution

A Large Ion Collider Experiment

6

● 8-core queue is ideal only for 8-core jobs
○ For any other job mix - there is not much real estate to play with

○ 24 hour max proxy could leave unused cores and reduce the overall efficiency

○ Not all jobs can use efficiently 8 cores, even if they are nominally 8-core

● The 8-core JA functionality is trivially extensible to any higher number of cores

● … to a whole node submission
○ Especially relevant for HPCs, where ‘whole node’ allocation is typical

○ Allows for more intricate and precise allocation of resources, for example
■ Mix of high I/O with high CPU consumption jobs (better balance)

■ Mix of high memory with lower memory requirement jobs (still fitting the overall envelope)

■ Full control of the CPU pinning - use of same NUMA domain*

■ Possibility to oversubscribe, in case of idle cores **

○ Makes the sysadmins jobs easy - no more queue management

* this pinning technique improves efficiency by ~5%

** oversubscription can provide up to ~15% additional resources

Experience with multi-core and whole node

A Large Ion Collider Experiment

7

● On HPCs and ALICE only sites
○ We have asked the site to

configure the batch system as

whole node

● The JA detects the number

cores and submits as many

jobs as it could fit
○ Plus uses the other

refinements described in the

previous slide

● Still, the majority of resources

are on 8-core queues

What is missing for wider adoption of whole node

or larger than 8-core queues

A Large Ion Collider Experiment

8

● Compatibility of OS on the host
○ cgroups v2 are only available and fully configurable on EL9

● Compatibility of batch system
○ Only HTCondor (versions >23) and Slurm (we developed a plug-in) support

rootless encapsulation in cgroups v2

○ Considerable inertia of the Grid resources - not only OS updates, but configuration

updates must be done at all sites

● Biggest issue - how to make all this work on shared sites where the job slots

must be freed after a reasonable time
○ Whole node or >8 core queues will work better with >24 hour proxy (slot booked

for several days)

Conclusions

A Large Ion Collider Experiment

9

● 8-core queues are nice, but have limitations with mixed workflow

● 16-core queues would make sense if the slot can be used for >>longer than 24-hour

period

● The variability of workflows and resources require flexible allocation and workload

management

○ Cores, memory, runtime, software packages, I/O…

○ More HPCs than ever in production

● The tools to manage arbitrary number of cores are ~there and can be incorporated in

the VO Grid software

○ Payload isolation, CPU pinning, self-imposed memory limits, use of accelerators

● It would make sense to re-examine the relatively rigid (and old) resource fragmentation

model and to move to a more open system

○ For example offer whole-node queues at large sites

○ Allow for long-lived (>>24h) proxy on whole node or even on 8-/16-core queues

