Mar 6, 2024

Quark-hadron duality and lattice QCD

Shoji Hashimoto (KEK, SOKENDAI)

LHC produces rich physics, thanks to **Quark-hadron duality**

stolen from INFN-ENP page

00000000

Quark-hadron duality ?

= Basic **assumption** (?) in (p)QCD

Duality badly violated…

- A lot of resonances!
	- Highly non-perturbative even for quarkonium.

Need to resum, yet incomplete

More complicated for the light sector

Badelek, Kwiecinski, RMP 68, 445 (1996)

Duality works when…

- One can avoid the threshold singularity.
- Δ must be larger than Λ_{QCD}^2 to avoid non-perturbative physics.

- Sufficiently smeared:
	- Consider a quantity **smeared** over some range.

Poggio, Quinn, Weinberg, PRD13, 1958 (1976)

$$
\overline{R}(s,\Delta) = \frac{\Delta}{\pi} \int_0^\infty ds' \frac{R(s')}{(s-s')^2 + \Delta^2}
$$

=
$$
\frac{1}{2\pi i} \int_0^\infty ds' R(s') \left(\frac{1}{s-s'+i\Delta} - \frac{1}{s-s'-i\Delta} \right)
$$

=
$$
\frac{1}{2i} [\Pi(s+i\Delta) - \Pi(s-i\Delta)]
$$

Im
$$
\Pi(s) \propto R(s) = \frac{\sigma(e^+e^- \rightarrow q\overline{q})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}
$$

QCD sum rule

Shifman, Vainshtein, Zakharov, NPB147 385, 448 (1979)

 $\Pi(Q^2)$: calculable by pQCD and OPE (+ Borel trans)

space-like region: Q^2 = -q² > 0

CD should work

QCD sum rule: OPE on the left

Shifman, Vainshtein, Zakharov, NPB147 385, 448 (1979)

 $\Pi(Q^2)$

Perturbative expansion

How well does the 1/Q² expansion converge?

Convergence seems good. (due to the smearing by the Borel transform).

Borel transform $\int ds e^{-s/M^2} \text{Im}\Pi(s)$ Plots from Ishikawa, SH, arXiv:2103.06539

(another choice of smearing)

Π(*Q*2)**: why not lattice?**

Well, it's surely possible!

$$
\Pi_{\mu\nu}(x)=\langle 0|T\{J_\mu(x)J_\nu(0)
$$

- Fully non-perturbative; no assumption involved.
	-
	-
- Euclidean lattice \rightarrow only space-like $\Pi(Q^2)$

- A bread-and-butter calculation, though need large resources to be realistic. - An input for hadronic-vacuum-polarization (HVP) contribution of muon g-2.

Euclidean lattice QCD

LQCD = ab initio calculation of QCD, on the Euclidean space

- Define the quark and gluon fields on the **Euclidean** lattice.
- Perform the path integral numerically (Monte Carlo).

from <u>usqcd.org</u>

More on vacuum polarization

Euclidean correlator

Go space-like

Fourier transform of lattice data to produce the space-like $\Pi(Q^2)$

RBC/UKQCD: Izubuchi@g-2 WS (2017)

smearing provided by

$$
\hat{\Pi}(Q^2) = Q^2 \int_0^\infty ds \frac{R(s)}{s(s+Q^2)}
$$

Im(s)
mgCD OPE

Variety of smearings

Some (weighted) integrals:

- can be written by a Fourier transform of the Euclidean lattice correlator

$$
^{\rm HVP}_{\mu} = \left(\frac{\alpha}{\pi} \right)^2 \int_0^\infty \frac{ds}{s} \ \frac{1}{\pi} {\rm Im} \Pi(s) \, K(s)
$$

and more, with some kernel $K(s)$ $a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dt C(t) \tilde{f}(t)$
Bernecker-Meyer (2011)

- Space-like correlator: $\Pi(-Q^2) = -$
	- weighted integral over s (or ω)
	-
- HVP contribution to Muon $g-2$: a^T
	- weighted integral over s (or ω)
	- can also be written as an integral (or a sum) of lattice correlator

$$
\frac{1}{\pi} \int_0^\infty ds \, \frac{\text{Im}\Pi(s + i\epsilon)}{s + Q^2} = \int_0^\infty ds \, \frac{\rho(s)}{s + Q^2}
$$

 Approximation of the form can relate Γ to the correlator.

c.f. spectral func: $\rho(\omega) \propto \sum_{\nu} \delta(\omega - E_X) |\langle X|J|0\rangle|^2 \sim \langle 0|J\,\delta(\omega - \hat{H})\,J|0\rangle$

all possible states contribute $\sim \langle 0|J\,e^{-\hat{H}t}\,J|0\rangle$

$$
\kappa(\omega)\rho(\omega) \sim \langle 0|JK(\hat{H})J|0\rangle
$$

Connection to the lattice correlator

sum over states: $\Gamma = \int_{0}^{\infty} d\omega$ (or smearing)

correlator:

 $C(t) = \int_0^\infty d\omega \, \rho(\omega) e^{-\omega t}$

Approximation?

 $K(\hat{H}) \simeq k_0 + k_1 e^{-\hat{H}} + k_2 e^{-2\hat{H}} + \cdots + k_N e^{-N\hat{H}}$

- Not always possible; when the function varies rapidly, in particular.
- Some methods developed recently.
	- Modified Backus-Gilbert Hansen, Lupo, Tantalo, arXiv:1903.06476
	- Or, Chebyshev polynomial

Bailas, Ishikawa, SH, arXiv:2001.11779

Chebyshev polynomials

(shifted) Chebyshev polynomials $T_0^*(x) = 1$ $T_1^*(x) = 2x - 1$ $T_2^*(x) = 8x^2 - 8x + 1$ $T_{j+1}^*(x) = 2(2x-1)T_j^*(x) - T_{j-1}^*(x)$

- Coefficients can be easily calculated.
- The "best" approx (= maximal deviation is minimal)
- Only smooth functions can be approximated.
- (The constraint $|T_i(z)| < 1$ helps stabilize.)

Bailas, SH, Ishikawa (2000)

$$
K(\hat{H}) \simeq \sum_{j=0}^{N} c_j T_j(e^{-\hat{H}})
$$

example of the Chebyshev approx:

 $z = e^{-\omega}$

Borel sum (as in QCD sum rule)

Ishikawa, SH, Phys. Rev. D104, 074521 (2021)

 $s\bar{s}$ channel

B meson semileptonic decays: total inclusive rate

Based on the collaborations of

- Gambino, SH, Phys. Rev. Lett. 125 (2020) 032001; arXiv:2005.13730
-
-

• Gambino, SH, Machler. Panero, Sanfilippo, Simula, Smecca, Tantalo, JHEP 07 (2022) 083; arXiv:2203.11762 • Barone, Kellerman, SH, Juttner, Kaneko, JHEP 07 (2023) 145; arXiv:2305.14092

see also, Hansen, Meyer, Robaina, Phys. Rev. D96, 094513 (2017); arXiv:1704.08993

Inclusive and exclusive B semileptonic decays

invariant mass of the hadronic system

inclusive sum over final states **exclusive** particular final states (D, D*, …)

 $mx²$

Inclusive semi-leptonic rate

Differential decay rate: $d\Gamma \sim |V_{cb}|^2 l^{\mu\nu} W_{\mu\nu}$

Structure function (or hadronic tensor):

$$
W_{\mu\nu} = \sum_X (2\pi)^2 \delta^4 (p_B - q - p_X) \frac{1}{2}
$$

$\frac{1}{2M_B}\langle B(p_B)|J_\mu^\dagger(0)|X\rangle\langle X|J_\nu(0)|B(p_B)\rangle$

 $\longrightarrow \langle B(\mathbf{0})|\tilde{J}^{\dagger}_{\mu}(-\boldsymbol{q};t)\,\delta(\omega-\hat{H})\,\tilde{J}_{\nu}(\boldsymbol{q};0)|B(\mathbf{0})\rangle$

Total decay rate:

$$
\Gamma \propto \int_0^{q_{\rm max}^2} dq \int_{\sqrt{m_D^2 + \mathbf{q}^2}}^{m_B - \sqrt{\mathbf{q}^2}} d\omega \, K(\omega; \mathbf{q}^2) \langle B(\mathbf{0}) | \tilde{J}^{\dagger}(-\mathbf{q}) \delta(\omega - \hat{H}) \tilde{J}(\mathbf{q}) | B(\mathbf{0}) \rangle
$$

kinematical (phase-space) factor

Compton amplitude obtained on the lattice:

$\big) \langle B(\mathbf{0}) |\tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})| B(\mathbf{0}) \rangle$

= $\langle B(\mathbf{0})|\tilde{J}^{\dagger}(-\mathbf{q})K(\hat{H};\mathbf{q}^{2})\tilde{J}(\mathbf{q})|B(\mathbf{0})\rangle$ $\langle B(\mathbf{0})|\tilde{J}^{\dagger}_{\mu}(-\mathbf{q};t) \tilde{J}_{\nu}(\mathbf{q};0)|B(\mathbf{0})\rangle$ \longrightarrow $\langle B(\mathbf{0})|\tilde{J}^{\dagger}(-\mathbf{q})e^{-\hat{H}t}\tilde{J}(\mathbf{q})|B(\mathbf{0})\rangle$

$K(\hat{H}) = k_0 + k_1 e^{-H} + k_2 e^{-2H} + \dots + k_N e^{-k_N H}$ ̂ ̂ ̂ Using :

Energy integral to be evaluated:

$$
\Gamma \propto \int_0^{q^2_{\rm max}} dq \int_{\sqrt{m_D^2+q^2}}^{m_B-\sqrt{q^2}} d\omega \, K(\omega;q^2)
$$

smear by sigmoid with a width σ; Need to take the $\sigma \rightarrow 0$ limit

kinematical

Phase-space factor as a kernel

 $K(\omega) \sim e^{2\omega t_0} (m_B - \omega)^l \theta(m_B - |\mathbf{q}| - \omega)$

Inclusive decay rate

- Prototype lattice calculation
	- $-$ B_s \rightarrow Xc
	- the b quark is lighter than physical.
- Decay rate in each channel
	- VV and AA
	- parallel or perpendicular to the recoil momentum
	- compared to "exclusive" (dashed lines)
		- VV|| is dominated by B→D
		- Others are by B→D*

differential rate / |**q**|

JLQCD data from Gambino et al., 2203.11762

excited-state contribution; so certainly inclusive.

Barone et al., 2305.14092

Excited states are visible

Sum over states: dangerous game?

Sum over states with a kernel $K(s)$: $\int_0^\infty ds K(s) \rho(s)$

Crucially depends on our ability to approximate the energy integral.

- Possible to treat any *K*(*s*) ?
- **No.** We know $K(s) = \delta(s)$ gets back to the ill-posed problem (= reconstruction of full spectral function from lattice data!)
- Then, what is the limitation or potential systematic effect?

Approx: hard or easy?

We don't know the spectrum a priori.

• Kernel approximation.

narrow smearing (σ = 0.02)

• Also, potential error from finite volume.

Details are important, … but skipped

Inclusive decay rate

ETMC data from Gambino et al., 2203.11762

- Backus-Gilbert works equally well
- $σ \rightarrow 0$ limit is taken (with different smearings)

From 2203.11762 Analysis with Backus-Gilbert (by Smecca et al)

- calculated at many **q**2 points
- lighter b quark

From 2203.11762 OPE calculation by Gambino and Machler

- SM JLQCD • PT including $O(\alpha_s)$, OPE up to $O(1/m^3)$
	- Hadronic parameters μ_{π}^2 etc are taken from the phono analysis.
	- b quark mass is adjusted to match the lattice calculations.
	- OPE breaks down near the **q**2 endpoint.

-
- ✓Error of OPE is from the hadronic
	- parameters. Large because of small m_b.
	- $\sqrt{\mathsf{Better}}$ for moments <M_x²>, <E_I>, ...

✓Good agreement.

SM ETMC

More recent works

Barone et al., 2305.14092

Kernel approximation: an example

narrow smearing ($\sigma = 0.02$) medium ($\sigma = 0.056$)

lowest energy state

Smearing:

- Too wide = away from the true func
- Too narrow = bad approx

Don't worry. This region is exclusively given by the ground state, anyway.

Significance of the error: the worst case

Inclusive Sellermann @ Lattice 2022 Ds decays:

Error bound (Chebyshev) X_{VV}^{\parallel} , $\omega_0 = 0.9 \omega_{min}$ Expected ground state contribution $-\mathsf{X}_{VV}^{\parallel}$, GSC, ω_0 = 0.9 ω_{min} - 0.8 N=100 0.6 N=10 \bar{X} [GeV²] inclusive ground state only |*Tj*(*e−H*)| ≦ 1 0.2 0.0 0.02 0.04 0.06 0.08 0.10 0.12 0.00 $1/N$ increasing order of poly with $\sigma = 1/N$

Finite volume effect

(two-body) spectrum is discrete

Kellermann @ Lattice 2023

Integral may depend strongly on the volume

Study with varying upper limit

$$
\left[\right]_{\text{Diagramm}} \sim i \int \frac{d^4q}{(2\pi)^4} \frac{1}{(p+q)^2 - m^2 + i\epsilon} \frac{1}{q^2 - m^2 + i\epsilon}
$$

A model for two-body states:

Another application: (deep) inelastic scattering

see also, QCDSF, PRL 118, 242001 (2017)

The energy region relevant for T2K. Not simply elastic, nor DIS.

(deep) (in)elastic scattering

structure function:

$$
W_{\mu\nu} = \frac{1}{2} \sum_{\text{pol}} \sum_{X} \langle N(p) | J_{\mu} | X(p_X) \rangle \langle X |
$$

$$
\times (2\pi)^3 \delta^{(4)}(p - p_X + q)
$$

Coptical theorem

$$
W_{\mu\nu}=\frac{1}{\pi}{\rm Im}
$$

forward-scattering amplitude

$$
T_{\mu\nu} = \frac{1}{2} \sum_{\text{pol}} \int d^4x \, e^{iqx} \langle N(p) | T \{ J_\mu(x) J
$$

 $(p_X)|J_{\nu}|N(p)\rangle$

$U_{\nu}(0)\}\ket{N(p)}$

Calculate on the lattice?

Accessible on the lattice:

$$
M_{\mu\nu}(t) \equiv \int d^3\mathbf{x} e^{-i\mathbf{q}\cdot\mathbf{x}} \langle N(\mathbf{p})|J_{\mu}(\mathbf{x},t)J_{\nu}(
$$

then,

$$
T_{\mu\nu}(p,q) = \int_0^\infty dt \, e^{q^0 t} M_{\mu\nu}(t)
$$

Possible only for unphysical kinematics. May be related to exp through Cauchy's integral. Or, … (see below)

$(\mathbf{0},0)|N(\mathbf{p})\rangle$

Total cross section = smeared spectrum

matrix element for a state with a fixed energy

Total cross section:

$$
\sigma \propto \int_0^{E^2} d{\bf q}^2 \int_{\sqrt{m_N^2+{\bf q}^2}}^{m_N+\sqrt{{\bf q}^2}} d\omega \, K({\bf q}^2,\omega) \langle N | \tilde{J}^\dagger({\bf q}) \delta(\omega-\hat{H}) \tilde{J}({\bf q}) | N \rangle
$$

integral over energy and momentum of X

kinematical factor determined by the leptonic part

H. Fukaya, T. Kaneko, SH, H. Ohki, Phys. Rev. D102, 11 (2010); arXiv:2010.01253.

the same story…

The devil is in the details

- Still in the early stage. Concerning the errors, I am optimistic, but more studies are

- necessary for various kinematical setups.
- Real calculation of $B\rightarrow X_c$, X_u at physical masses still to be done.
- Many potential applications
	- D and B. Not just total rate, but moments, e.g. $\langle M_{X}^2 \rangle$, $\langle E_{\parallel} \rangle$
	- Comparison with OPE, then to determine MEs (see 2203.11762)
	- Borel sum (as in the SVZ sum rule; see Ishikawa-SH, 2103.06539)
	- lepton-nucleon scattering, not-so-deep inelastic scattering

So, what happened to duality?

Not an assumption

- pQCD + OPE is useful once sufficiently smeared (like the Borel transform). Question

- Rather, a question of the ability to calculate reliably.
- remains: truncation?
- smearing is arbitrary in principle. (In practice? Need detailed studies.)

- Fully non-perturbative by LQCD. Systematic errors can be controlled rigorously. The

Jets, hadronization, … for LHC?

- Without smearing, the assumption is back.
- Large momentum is a stumbling block on the lattice, yet. Go quantum?