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LHC produces rich physics, thanks to … 
Quark-hadron duality

stolen from INFN-ENP page



Quark-hadron duality ?
Generation of an e+e−

→ tt̄ → bb̄W +W − event

• hard scattering

• (QED) initial/final
state radiation

• partonic decays, e.g.
t → bW

• parton shower
evolution

• nonperturbative
gluon splitting

• colour singlets

• colourless clusters

• cluster fission

• cluster → hadrons

• hadronic decays

from Zeppenfeld’s lecture Well approximated by                   ? 
= Basic assumption (?) in (p)QCD

e+e− → qq

- What is the condition? 
- How do you estimate the error? 
- What can be done if not satisfied? 

e+e− → qq

hadrons



Duality badly violated…

• A lot of resonances! 

- Highly non-perturbative even for 
quarkonium. 

       Need to resum, yet incomplete 

- More complicated for the light sector
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6 52. Plots of Cross Sections and Related Quantities

R in Light-Flavor, Charm, and Beauty Threshold Regions
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Figure 52.3: R in the light-flavor, charm, and beauty threshold regions. Data errors are total
below 2 GeV and statistical above 2 GeV. The curves are the same as in Fig. 52.2. Note: CLEO data
above Ã (4S) were not fully corrected for radiative e�ects, and we retain them on the plot only for
illustrative purposes with a normalization factor of 0.8. The full list of references to the original data
and the details of the R ratio extraction from them can be found in [100]. The computer-readable
data are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and
HEPDATA (Durham) Groups, August 2019.)
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should be considered as an extension of the comprehen-
sive small-x physics review of Badełek, Charchuła,
Krawczyk, and Kwieciński (1992), including a more de-
tailed treatment of low-Q2 problems. We shall be con-
cerned exclusively with charged-lepton inelastic scatter-
ing. A recent review of problems specific to inelastic
neutrino (and antineutrino) interactions has been pre-
sented by Kopeliovich and Maraga (1993). We shall also
focus predominantly on the structure function F2; par-
ticular final-state structures, such as jets, diffractive dis-
sociation, and so on, will not be considered.

The content of the paper is as follows. After basic
definitions and constraints (Sec. II) we present theoreti-
cal ideas and models describing low-Q2 physics (Sec.
III). High-energy photoproduction (Sec. IV) is then fol-
lowed by a description of phenomenological parametri-
zations of structure functions (Sec. V). Special attention
is given to dynamical models of the low-Q2 behavior of
F2 (Sec. VI). Nuclear shadowing is described in Sec. VII,
and finally, an update of experimental data is given in
Sec. VIII. Section IX contains conclusions and outlook.

II. BASIC DEFINITIONS AND CONSTRAINS

The kinematics of inelastic charged-lepton scattering
is defined in Fig. 2(a). The one-photon exchange ap-
proximation is assumed throughout this paper. The
imaginary part of the forward Compton scattering am-
plitude of the virtual photon is defined by the tensor
Wmn (see, for example, Halzen and Martin, 1984):

Wmn~p ,q !5
F1~x ,Q2!

M S 2gmn1
qmqn

q2 D
1

F2~x ,Q2!

M~p•q ! S pm2
p•q
q2 qmD S pn2

p•q
q2 qnD .

(1)

In this equation q2 is the square of the four-momentum
transfer, Q252q2, x5Q2/(2p•q) is the Bjorken scal-
ing variable, and M is taken as the proton mass. The
invariant quantity p•q is related to the energy transfer
n in the target rest frame by p•q5Mn . The invariant
mass W of the electroproduced hadronic system is then
W25M212Mn2Q2. Often one uses the notation
W2[s .

The deep-inelastic regime is defined as a region where
both Q2 and 2Mn are large, and their ratio x is kept
fixed. At Q2 smaller than few GeV 2, x can probably no
longer be interpreted as the momentum of a struck par-
ton, but it remains a convenient variable for displaying
the data. The functions F1(x ,Q2) and F2(x ,Q2) are the
structure functions of the target. For a nuclear target it
will be assumed that the structure functions are normal-
ized to the number of nucleons in the target nucleus, and
they will be denoted Fi

A , i51,2 (except for the deuteron
where the symbol F2

d will be used). The tensor Wmn sat-
isfies the current conservation constraints

FIG. 1. Illustration of the continuity of physical processes: the
double differential cross section for electron-proton inelastic
scattering is sketched as a function of the energy transfer n for
different values of the resolution Q2. Dashed and continuous
lines correspond to constant values of x and W , respectively.
Definitions of kinematic variables are given in Sec. II.

FIG. 2. (a) Kinematics of inelastic charged-lepton–proton scat-
tering in the one-photon exchange approximation and its rela-
tion through the optical theorem to Compton scattering for the
virtual photon; p and q denote the four-momenta of the pro-
ton and virtual photon, respectively. (b) Handbag diagram for
virtual Compton scattering on a proton; k denotes the four-
momentum of the struck quark (antiquark). At high Q2 and in
the infinite-momentum frame of the proton, k'xp where x is
the Bjorken scaling variable.

446 B. Badełek and J. Kwieciński: Low-Q2 region in electroproduction

Rev. Mod. Phys., Vol. 68, No. 2, April 1996

Badelek, Kwiecinski, RMP 68, 445 (1996)

e-p scattering:

perturbative

non-perturbative

??



Duality works when…

• Sufficiently smeared: 

- Consider a quantity smeared over some range. 

- One can avoid the threshold singularity. 

- Δ must be larger than ΛQCD2 to avoid non-perturbative physics.

Poggio, Quinn, Weinberg, PRD13, 1958 (1976)
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QCD sum rule
Shifman, Vainshtein, Zakharov, NPB147 385, 448 (1979)

Π(Q2): calculable by pQCD and OPE (+ Borel trans)

space-like region: Q2= -q2 > 0

time-like region: s=q2 > 4mπ2

plays the role of smearing over energy

pQCD should work
exp available

Exact analytic relations



QCD sum rule:  OPE on the left
Shifman, Vainshtein, Zakharov, NPB147 385, 448 (1979)

Perturbative expansion

Non-perturbative dynamics encoded

Suppressed for large Q2=-q2

How well does the 1/Q2 expansion converge?



perturbative expansion OPE

Convergence seems good. 
(due to the smearing by the Borel transform).

Plots from Ishikawa, SH, arXiv:2103.06539Borel transform

(another choice of smearing)



Π(Q2): why not lattice?

Well, it’s surely possible!

⇧µ⌫(x) = h0|T{Jµ(x)J⌫(0)}|0i

• Fully non-perturbative;  no assumption involved. 
- A bread-and-butter calculation, though need large resources to be realistic. 
- An input for hadronic-vacuum-polarization (HVP) contribution of muon g-2. 

• Euclidean lattice →  only space-like Π(Q2)



Euclidean lattice QCD

LQCD = ab initio calculation of QCD, on the Euclidean space

• Define the quark and gluon fields on the 
Euclidean lattice. 

• Perform the path integral numerically 
(Monte Carlo).



from usqcd.org

http://usqcd.org


More on vacuum polarization



Euclidean correlator

Z
d3xhO(x, t)O†(0)i

- e−Et instead of e−iEt
read off the exponential slope at 
long distances 
→ hadron energy (or mass)

More physics info contained 
in the short-distance region



Go space-like

Fourier transform of lattice data 
to produce the space-like Π(Q2)

from R(s)

RBC/UKQCD: 
Izubuchi@g-2 WS (2017)

lattice

Q2

smearing provided by



Variety of smearings

Some (weighted) integrals: 

• Space-like correlator: 

- weighted integral over s (or ω) 
- can be written by a Fourier transform of the Euclidean lattice correlator 

• HVP contribution to Muon g-2: 

- weighted integral over s (or ω) 
- can also be written as an integral (or a sum) of lattice correlator 

and more, with some kernel K(s) Bernecker-Meyer (2011)



 Approximation of the form                                        

 can relate Γ to the correlator.

Connection to the lattice correlator

correlator:

c.f.   spectral func:

all possible states contribute

sum over states: 
(or smearing)



Approximation?

• Not always possible; when the function 
varies rapidly, in particular.  

• Some methods developed recently. 

• Modified Backus-Gilbert 

• Or, Chebyshev polynomial
Bailas, Ishikawa, SH, arXiv:2001.11779

Hansen, Lupo, Tantalo, arXiv:1903.06476



Chebyshev polynomials

(shifted) Chebyshev polynomials 

- Coefficients can be easily calculated. 
- The “best” approx (= maximal deviation is minimal) 
- Only smooth functions can be approximated. 
- (The constraint |Tj(z)| < 1 helps stabilize.)
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Borel sum (as in QCD sum rule)
Ishikawa, SH, Phys. Rev. D104, 074521 (2021)

FIG. 14. Comparison of ⇧̃(M2) in the continuum limit with the experimental values of the �

meson contribution.

VI. CONCLUSION AND OUTLOOK

The Borel transform has often been used in the QCD sum rule analyses in order to

improve the convergence of OPE and to enhance the contribution of the ground state, which

is of the main interest. A crucial question is then whether the theoretical uncertainty in the

perturbative expansion and OPE is well under control. The uncertainty due to the modeling

of the excited state and continuum contributions is another important issue in the QCD sum

rule. In this work, we provide a method to compute the Borel transform utilizing the lattice

QCD data for current correlators. Since the computation is fully nonperturbative in the

entire range of the Borel mass M , one can use the result to verify the theoretical methods

so far used in the QCD sum rule.

We find a good agreement between the lattice data and OPE in the region of M >

1.0 GeV. The OPE is truncated at the order 1/M6. Since the OPE involves unknown

condensates, this comparison can be used to determine these parameters, provided that the

lattice data are su�ciently precise. As the first example, we attempt to extract the gluon

condensate, which appears in OPE at the order 1/M4. The size of the error is comparable

to those of previous phenomenological estimates. With more precise lattice data in various

channels, one would be able to determine the condensates of higher dimensions, which have

24

channel

lattice

pQCD + OPE φ meson contrib

Lattice can provide the entire 
energy range with precision.



B meson semileptonic decays: 
    total inclusive rate

Based on the collaborations of  
• Gambino, SH, Phys. Rev. Lett. 125 (2020) 032001; arXiv:2005.13730 
• Gambino, SH, Machler. Panero, Sanfilippo, Simula, Smecca, Tantalo, JHEP 07 (2022) 083; arXiv:2203.11762 
• Barone, Kellerman, SH, Juttner, Kaneko, JHEP 07 (2023) 145; arXiv:2305.14092 
  
see also, Hansen, Meyer, Robaina, Phys. Rev. D96, 094513 (2017); arXiv:1704.08993



B Xc

Inclusive and exclusive B semileptonic decays

mX2
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hadronic system
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Dπ,  Dππ,  …

inclusive

Phase space

inclusive  sum over final states
exclusive  particular final states (D, D*, …) 



Inclusive semi-leptonic rate

Differential decay rate:

Structure function (or hadronic tensor):

Xc(ω)B

Total decay rate:

kinematical (phase-space) factor



Compton amplitude obtained on the lattice:

tsrc t1 t2 tsnk

J†
µ J⌫

BB

Fig. 4 Valence quark propagators and their truncations. The thin line connecting the

source tsrc and sink tsnk time slices represents the spectator strange quark propagator. A

smearing is introduced for the initial B meson interpolating operator at tsrc and tsnk. The

solid thick lines are the initial b and dashed line denotes the final c quark. The currents J†
µ

and J⌫ are inserted at t1 and t2, respectively.

see [24–26] for instance.) So far, in the literature, the moments of hadron energy and invari-

ant mass as well as the lepton energy have been considered; our proposal is to analyze the

inverse moments (12) and (13) at su�ciently small !, instead, to extract |Vcb| or |Vub|. To
actually extract the moments from the experimental data is beyond the scope of this work.

The structure functions Ti have been calculated within the heavy quark expansion

approach. At the tree-level, the explicit form is given in the appendix of [23]. One-loop

or even two-loop calculations have also been carried out [27–29], but they only concern the

di↵erential decay rates (or the imaginary part of the structure functions), and one needs to

perform the contour integral to relate them to the unphysical kinematical region.

4 Lattice calculation strategy

In this section, we describe the method to extract Ti’s from a four-point function calcu-

lated on the lattice. Although we take the B ! D(⇤)`⌫ channel to be specific, the extension

to other related channels is straightforward.

We consider the four-point function of the form

CSJJS
µ⌫ (tsnk, t1, t2, tsrc) =

X

x

D
PS(x, tsnk)J̃

†
µ(q, t1)J̃⌫(q, t2)P

S†(0, tsrc)
E
, (14)

where PS is a smeared pseudo-scalar density operator to create/annihilate the initial B

meson at rest. The inserted currents J̃µ are either vector or axial-vector b ! c current

and assumed to carry the spatial momentum projection
P

x1
eiq·x1J(x1, t1). Thus, the mass

dimension of J̃µ is zero. The quark-line diagram representing (14) is shown in Figure 4.

10

K(Ĥ) = k0 + k1e−Ĥ + k2e−2Ĥ + ⋯ + kNe−kNĤ
Using :

=

Energy integral to be evaluated:
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Inclusive decay rate

• Prototype lattice calculation 
- Bs → Xc 
- the b quark is lighter than physical. 

• Decay rate in each channel 
- VV and AA 
- parallel or perpendicular to the recoil 

momentum 
- compared to “exclusive” (dashed lines) 

- VV|| is dominated by B→D  
- Others are by B→D*

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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0
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3
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XV V k

XV V ?

XAA?

XAAk

differential rate / |q|

JLQCD data from 
Gambino et al., 2203.11762

?
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Figure 18. Ground-state limit. The “exclusive” labels refer to the data built from the three-point
correlators as in Eq. (4.5), whereas the “inclusive” label refers to the full inclusive data analysis
starting from the four-point correlation functions. The analysis has been performed using the
Chebyshev approach.

function representing the ground state can be constructed with input from lattice data
for the exclusive decay Bs ! Dsl⌫l. In particular, restricting the discussion to the vector
channel V V , the ground-state correlator

CG
µ⌫(t) =

1

4MBsEDs

hBs|V
†
µ |DsihDs|V⌫ |Bsie

�EDs t , (4.5)

can be constructed from lattice data for the ratio of three-point and two-point functions

RBsDs,µ(t; q) =
p

4MBsEDs

vuutCSS
BsDs,µ

(q, tsnk, t, tsrc)CSS
DsBs,µ

(q, tsnk, t, tsrc)

CSS
Bs

(tsnk, tsrc)CSS
Ds

(q, tsnk, tsrc)
, (4.6)

which converges to Mµ ⌘ hDs|Vµ|Bsi for t � tsrc and t < tsnk. The matrix element can be
decomposed into form factors

Mµ = f+(q2)(pBs + pDs)µ + f�(q2)(pBs � pDs)µ . (4.7)

Recalling that we assume pBs = 0, we then extract f+(q2) from a constant fit to the
combination

Rf+(t; q)
q 6=0
=

1

2MBs

 
RBsDs,0(t; q) + (MBs � EDs)

P
3

i=1
RBsDs,i(t; q)
P

3

i=1
qi

!
, (4.8)

which converges to f+(q2) as RBsDs,µ(t; q) ! Mµ. We consider only the three smaller
momenta to test the approach, as the signal-to-noise deteriorates rapidly with larger q2.

The result of the inclusive analysis for the channel X̄k
V V is reported in Fig. 18. In

particular, we compare the expected value (2.18) from the extracted values of f+(q2) with
the inclusive analysis performed using the mock data CG

µ⌫ and the real data Cµ⌫ . Note

– 28 –

excited-state contribution; 
so certainly inclusive.

Barone et al., 2305.14092

Excited states are visible

ground stateinclusive



Sum over states: dangerous game?

Sum over states with a kernel K(s) :

Crucially depends on our ability to approximate the energy integral. 
- Possible to treat any K(s) ? 
- No.  We know K(s) = δ(s) gets back to the ill-posed problem                     

(= reconstruction of full spectral function from lattice data!) 

- Then, what is the limitation or potential systematic effect? 



Approx: hard or easy?

upper limit

narrow smearing (σ = 0.02)

lowest energy state
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• Kernel approximation.

We don’t know the spectrum a priori.

• Also, potential error from finite volume.

K(ω)



Details are important, … but skipped



Inclusive decay rate

ETMC data from 
Gambino et al., 2203.11762

From 2203.11762 
Analysis with Backus-Gilbert (by Smecca et al) 

• Backus-Gilbert works equally well 
• σ→0 limit is taken (with different smearings) 

• calculated at many q2 points 
• lighter b quark
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From 2203.11762 
OPE calculation by Gambino and Machler 

• PT including O(αs), OPE up to O(1/m3) 
• Hadronic parameters μπ2 etc are taken 

from the phono analysis. 
• b quark mass is adjusted to match the 

lattice calculations. 
• OPE breaks down near the q2 endpoint. 

✓Good agreement.  
✓Error of OPE is from the hadronic 

parameters. Large because of small mb. 
✓Better for moments <MX2>, <El>, …



More recent works
Barone et al., 2305.14092

Further detailed study at physical b quark mass
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Figure 11. Estimate of X̄(q2) with the two different strategies for 10 different q2 with N = 9 and
q2
max = 5.86 GeV2.

Figure 12. Contributions to X̄(q) from the Chebyshev-polynomial approach at N = 9 and !0 =
0.9!min with associated error bars. The black triangles correspond to the final value X̄(q2) =P2

l=0

P
{µ,⌫} X̄(l)

µ⌫ (q2). The solid black lines separate the contributions from l = 0 (bottom), l = 1
(middle) and l = 2 (top).

channel X̄(2)

AiAi
as it is the one responsible for the largest contribution. The plot is shown

in Fig. 15. We can see that for small q2 the value of X̄(q) is stable, which implies that
statistical and systematic errors are well balanced. For larger q2 the situation is more
delicate: this can be understood in terms of the reduced phase space in !, as shown for
example in Fig. 10. A first attempt at mitigating the induced systematic effect could
be to identify the region where the two Backus-Gilbert approaches with different bases are
consistent, to identify (where possible) a plateau, and to estimate a value inside such region.

– 24 –

Chebyshev vs Backus-Gilbert: 
• consistent at a certain value of σ
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upper limit

Kernel approximation: an example

narrow smearing (σ = 0.02) medium (σ = 0.056)

lowest energy state

N = 10 N = 10

Smearing: 
• Too wide = away from the true func 
• Too narrow = bad approx



Significance of the error: the worst case

Inclusive semi-leptonic decays of charmed mesons with Möbius domain wall fermions Ryan Kellermann

Figure 2: -̄ contributions for di�erent kinematical channels as a function of q. The vertical lines show the
value q2

max for the vector (V) and pseudoscalar (PS) meson, respectively. The approximation is obtained for
# = 10 Chebyshev polynomials and the smearing of the kernel function is given by f = 1/# = 0.1. With the
available lattice data # = 10 is the upper limit for the Chbeyshev approximation, since the statistical noise of
the data becomes too strong for higher orders.

2c/!. All the data have been generated with Grid [8] and Hadrons [9] software packages. Part of
the fits in the analysis has been performed using lsqfit [10].

The number of configurations averaged are 50 and the measurement is duplicated with 8
di�erent source time slices. For each fixed spatial momentum q we calculate the four-point
correlation function to extract ⇠`a

� � (C, q) (further details on the lattice calculation can be found in
[11]) and determine the shifted Chebyshev matrix elements from ⇠`a

� � (C + 2C0, q)/⇠`a
� � (2C0, q) as

shown in (8) by performing a constrained fit imposing the condition (10). The l-integral is then
obtained by using the representation (8).

In Figure 2 we show the preliminary results for the energy integral -̄ defined in (4), where
we decompose -̄ into di�erent contributions, i.e. whether we have vector (VV) or axial-vector
(AA) current insertions, as well as the polarization of the inserted currents, i.e. parallel (k) and
perpendicular (?) to the momentum q. Our results are shown for a choice of # = 10 and the
smearing of the kernel function (7) is defined through f = 1/# = 0.1. With the available data,
# = 10 is the highest order that we can achieve with the Chebyshev approximation, since the
statistical noise of the lattice data becomes too large for orders of # > 10. In Figure 2, we also
include a contribution to -̄ k

++ from the exclusive semi-leptonic ⇡ !  decay, allowing us to
surmise that our results are in the right ballpark.

We comment on the region close to the end of the phase space, i.e. the point of q = (1, 1, 1)
corresponding to q2 ⇡ 0.66 GeV2 shown in Figure 2, for - k

++ and - k
��. In this region, a dominant

contribution from the ground state is expected for - k
++ , since the excited state energy exceeds the

5

Inclusive semi-leptonic decays of charmed mesons with Möbius domain wall fermions Ryan Kellermann

Figure 4: Development of approximation results for - k
++ at q = (1, 1, 1) depending on the number of

polynomials # used in the Chebyshev approximation. We set the smearing f of the kernel function to be
f = 1/# .The blue triangles show the approximation results using the available lattice data, while the orange
circles are obtained by only considering the ground state contribution obtained from fitting the lattice data.

4.2 Above the kinematical end-point: - k
++

For - k
++ we expect contributions from both the pseudoscalar and vector mesons. We have to

take both of these contributions into consideration to obtain an estimate of the ground-state-only
contribution, which, together with the results obtained from using the inclusive data, are shown in
Figure 4. Here, it is important to note how the error on the inclusive data is estimated. Taking into
account the analytical form of the approximation given in Eq. (8) and the fact that for higher orders
of # the Chebyshev matrix elements are basically given by 0±1, we can construct an error estimate
by simply adding up the absolute values of the coe�cients 2⇤9 appearing in the approximation. These
error estimates are shown in Figure 4. The figure shows that our error estimate is able to cover
the expected ground state contribution. Furthermore, the behavior of the ground state contribution,
i.e. the steady increase of the approximation value, shown in the Figure 4 is expected. For -̄ k

++

at q = (1, 1, 1) the range of the energy integral is quite narrow and this range is dominated by the
ground state. So that depending of the choice of the Chebyshev polynomials # , and consequently
the smearing f, our approximation monotonously increases towards the true value.

Finally, let us close this section by showing how the results shown in Figure 2 change if we
increase # to 100 and apply the error estimation method discussed above. The results are shown in
Figure 5. The Figure shows that even if the number of polynomials is increased the central values
of the approximation remains stable. This should also be the case if we take the # ! 1 limit. At
the same time we see that the error bars also start increasing significantly. We note that the error
bars shown in this plot are most likely overestimated since we are assuming the mathematical upper
limit. The actual error is expected to be smaller, but a proper estimate requires knowledge on the

7

increasing order of poly with σ = 1/N

N=10

N=100

Don’t worry. This region is exclusively 
given by the ground state, anyway.

Ds decays: 
Kellermann @ Lattice 2022 Error bound (Chebyshev)

|Tj(e−H)| ≦ 1



Finite volume effect

(two-body) spectrum is discrete

Kellermann @ Lattice 2023

Integral may depend strongly on the volume
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Another application: 
(deep) inelastic scattering

 see also, QCDSF, PRL 118, 242001 (2017)
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should be considered as an extension of the comprehen-
sive small-x physics review of Badełek, Charchuła,
Krawczyk, and Kwieciński (1992), including a more de-
tailed treatment of low-Q2 problems. We shall be con-
cerned exclusively with charged-lepton inelastic scatter-
ing. A recent review of problems specific to inelastic
neutrino (and antineutrino) interactions has been pre-
sented by Kopeliovich and Maraga (1993). We shall also
focus predominantly on the structure function F2; par-
ticular final-state structures, such as jets, diffractive dis-
sociation, and so on, will not be considered.

The content of the paper is as follows. After basic
definitions and constraints (Sec. II) we present theoreti-
cal ideas and models describing low-Q2 physics (Sec.
III). High-energy photoproduction (Sec. IV) is then fol-
lowed by a description of phenomenological parametri-
zations of structure functions (Sec. V). Special attention
is given to dynamical models of the low-Q2 behavior of
F2 (Sec. VI). Nuclear shadowing is described in Sec. VII,
and finally, an update of experimental data is given in
Sec. VIII. Section IX contains conclusions and outlook.

II. BASIC DEFINITIONS AND CONSTRAINS

The kinematics of inelastic charged-lepton scattering
is defined in Fig. 2(a). The one-photon exchange ap-
proximation is assumed throughout this paper. The
imaginary part of the forward Compton scattering am-
plitude of the virtual photon is defined by the tensor
Wmn (see, for example, Halzen and Martin, 1984):

Wmn~p ,q !5
F1~x ,Q2!

M S 2gmn1
qmqn

q2 D
1

F2~x ,Q2!

M~p•q ! S pm2
p•q
q2 qmD S pn2

p•q
q2 qnD .

(1)

In this equation q2 is the square of the four-momentum
transfer, Q252q2, x5Q2/(2p•q) is the Bjorken scal-
ing variable, and M is taken as the proton mass. The
invariant quantity p•q is related to the energy transfer
n in the target rest frame by p•q5Mn . The invariant
mass W of the electroproduced hadronic system is then
W25M212Mn2Q2. Often one uses the notation
W2[s .

The deep-inelastic regime is defined as a region where
both Q2 and 2Mn are large, and their ratio x is kept
fixed. At Q2 smaller than few GeV 2, x can probably no
longer be interpreted as the momentum of a struck par-
ton, but it remains a convenient variable for displaying
the data. The functions F1(x ,Q2) and F2(x ,Q2) are the
structure functions of the target. For a nuclear target it
will be assumed that the structure functions are normal-
ized to the number of nucleons in the target nucleus, and
they will be denoted Fi

A , i51,2 (except for the deuteron
where the symbol F2

d will be used). The tensor Wmn sat-
isfies the current conservation constraints

FIG. 1. Illustration of the continuity of physical processes: the
double differential cross section for electron-proton inelastic
scattering is sketched as a function of the energy transfer n for
different values of the resolution Q2. Dashed and continuous
lines correspond to constant values of x and W , respectively.
Definitions of kinematic variables are given in Sec. II.

FIG. 2. (a) Kinematics of inelastic charged-lepton–proton scat-
tering in the one-photon exchange approximation and its rela-
tion through the optical theorem to Compton scattering for the
virtual photon; p and q denote the four-momenta of the pro-
ton and virtual photon, respectively. (b) Handbag diagram for
virtual Compton scattering on a proton; k denotes the four-
momentum of the struck quark (antiquark). At high Q2 and in
the infinite-momentum frame of the proton, k'xp where x is
the Bjorken scaling variable.
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The energy region relevant for T2K. 
Not simply elastic, nor DIS.



(deep) (in)elastic scattering
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structure function:

forward-scattering amplitude

optical theorem

Calculate on the lattice?
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Accessible on the lattice:
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then,
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(elastic)

cut
(resonances)
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(Euclidean) lattice calculation
only in the region |w|<1.
(no singularity)

fixed Q2

Possible only for unphysical 
kinematics. May be related to 
exp through Cauchy’s integral. 
Or, … (see below)



Total cross section = smeared spectrum
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Total cross section:

integral over energy and momentum of X
matrix element for a state  
with a fixed energy

kinematical factor determined  
by the leptonic part

H. Fukaya, T. Kaneko, SH, H. Ohki, Phys. Rev. D102, 11 (2010); arXiv:2010.01253.

the same story…



The devil is in the details

- Still in the early stage. Concerning the errors, I am optimistic, but more studies are 
necessary for various kinematical setups. 

- Real calculation of B→Xc, Xu at physical masses still to be done. 

• Many potential applications 

- D and B.  Not just total rate, but moments, e.g.  <MX2>, <El> 

- Comparison with OPE, then to determine MEs (see 2203.11762) 

- Borel sum (as in the SVZ sum rule; see Ishikawa-SH, 2103.06539) 

- lepton-nucleon scattering, not-so-deep inelastic scattering



So, what happened to duality?

Not an assumption 

- Rather, a question of the ability to calculate reliably. 

- pQCD + OPE is useful once sufficiently smeared (like the Borel transform).  Question 
remains: truncation? 

- Fully non-perturbative by LQCD.  Systematic errors can be controlled rigorously.  The 
smearing is arbitrary in principle.  (In practice?  Need detailed studies.) 

Jets, hadronization, … for LHC? 

- Without smearing, the assumption is back. 

- Large momentum is a stumbling block on the lattice, yet. Go quantum?


