Non-Linearities in Black Hole Ringdowns Explained from symmetry

Based on the work arXiv:2301.09345, In collaboration with A. Kehagias, A. Riotto, F. Riva

CAGE BSM Workshop, CERN, 13 February 2024 Davide Perrone, University of Geneva

Inspiral

Inspiral

Merger

Ringdown, sum of Quasi-Normal Modes Main component of the signal

Ringdown ~ $\sum_{n} QNM_{n}$

They dominate the Ringdown phase

Ringdown, sum of Quasi-Normal Modes Main component of the signal

Ringdown ~ $\sum_{n} QNM_{n}$

They dominate the Ringdown phase

Kerr Black Hole Spin J and mass M

a = J/M

Horizons $\hat{r}_{\pm} = M \pm \sqrt{M^2 - a^2}$ Temperature $T_H = \frac{\hat{r}_+ - \hat{r}_-}{8\pi M \hat{r}_+}$ Angular velocity $\Omega_{BH} = \frac{a^2}{2M \hat{r}_+}$

Linear Quasi-Normal modes Perturbing around the background

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}, \quad |h| \ll 1$$

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left(\omega^2 - V_{eff}(x)\right)\right)\psi_{l,m}(x) + \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left(\omega^2 - V_{eff}(x)\right)\psi_{l,m}(x) + \frac{\mathrm{d}^2}{\mathrm{d}x^2} +$$

Angular Equation = 0

$$x = r + r_+ \log(r - r)$$

Write the perturbation in scalar variables

(x) = 0

Equations decouple if written as Weyl scalars

 r_{+}) Tortoise Coordinate

Quasi-Normal modes boundary conditions Ingoing at horizon and outgoing at infinity

Free Space

Reconstructing the metric For specific values of angular momentum

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left(\omega^2 - V_{eff}(x)\right)\right)\psi_{l,m}(x)$$

$$h_{l,m}(t-r) = \frac{1}{r} \sum_{n} A_{l,m,n} e^{-i\omega_{l,m,n}}$$

f(x) = 0 \longrightarrow Known frequencies! $\omega_{l,m,n} \sim \Omega_{BH} m - i T_H^{-1} (n+l)$

$$(t-r)$$

Ringdown, linear

We target the amplitudes $A_{l,m,n}$

Reconstructing the metric For specific values of angular momentum

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \left(\omega^2 - V_{eff}(x)\right)\right)\psi_{l,m}(x)$$

$$h_{l,m}(t-r) = \frac{1}{r} \sum_{n} A_{l,m,n} e^{-i\omega_{l,m,n}}$$

Depend on initial conditions

f(x) = 0 \longrightarrow Known frequencies! $\omega_{l,m,n} \sim \Omega_{BH} m - i T_H^{-1} (n+l)$

$$(t-r)$$

Ringdown, linear

We target the amplitudes $A_{l,m,n}$

General Relativity is Non-Linear!

Does linear perturbation theory suffice?

 $\left(\frac{\mathrm{d}^2}{\mathrm{d}\mathrm{x}^2} + \left(\omega^2 - V_{eff}\right)\right)\psi^{(1)} = 0,$ $\left(\frac{\mathrm{d}^2}{\mathrm{d}\mathrm{x}^2} + \left(\omega^2 - V_{eff}\right)\right)\psi^{(2)} = S(\psi^{(1)}, \psi^{(1)})$

Linear order

Non-Linear order

K. Mitman et al. (2022), M. Cheung et al. (2022)

How to find the Amplitude of Non-Linearity Three point normalised with linear amplitude square

$$\frac{h_{l_1,m_1}}{h_{l_2,m_2}} + \frac{h_{l_1+l_2,m_1+m_2}}{h_{l_2,m_2}}$$
$$\frac{|A_{(4,4)}^{(2,2,0)\times(2,2,0)}|}{|A_{(2,2,0)}| |A_{(2,2,0)}|} = 0.1637 \pm 0.0018$$

K. Mitman et al. (2022), M. Cheung et al. (2022)

 $\frac{\langle h_{l_1,m_1} h_{l_2,m_2} h_{l_1+l_2,m_1+m_2} \rangle}{\langle h_{l_1,m_1}^2 \rangle \langle h_{l_2,m_2}^2 \rangle}$

$$\frac{\left|A_{(5,5)}^{(2,2,0)\times(3,3,0)}\right|}{\left|A_{(2,2,0)}\right|\left|A_{(3,3,0)}\right|} = 0.4735 \pm 0.0062$$

Numerical values, a=0.7M

QNM Nonlinearities are generated near the horizon **Near horizon limit of Kerr metric**

$J = M^{2}$

A. Kehagias, D.P., F. RIva, A. Riotto (2023)

$\hat{r}_{+} = \hat{r}_{-} = M$

We take the extremal limit for simplicity

Take a fixed θ slice

Take a fixed θ slice

Take a fixed θ slice

Take a fixed θ slice

Take a fixed θ slice ε outside the horizon

Take a fixed θ slice ε outside the horizon

Take a fixed θ slice ε outside the horizon

AdS₃ metric SL(2, \mathbb{R}) $\otimes U(1)$

Take a fixed θ slice ε outside the horizon

M. Guica et al. (2008)

- AdS₃ metric
- $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

Not extended

M. Guica et al. (2008)

- AdS₃ metric
- $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

Boundary CFT

Half Virasoro Algebra, c = 12J

Not extended

Infinite Gap in extremal limit

M. Guica et al. (2008)

- AdS₃ metric
- $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

Boundary CFT

Half Virasoro Algebra, c = 12J

Not extended

Infinite Gap in extremal limit

M. Guica et al. (2008)

- AdS₃ metric
- $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

Half Virasoro Algebra, c = 12J

Left movers excited with $T_L = \frac{1}{2\pi}$

2D CFT correlators Exploiting the duality

 $Z_{\text{AdS,eff}}[h] = e^{iS[h]} = \langle e^{\int_{\partial \text{AdS}} T^{\mu\nu} h_{\mu\nu}} \rangle_{\text{CFT}}$ $\langle T(w_1)T(w_2)\rangle, \quad \langle T(w_1)T(w_2)T(w_3)\rangle$ $W_i = \phi_i \to m_i$

Gravitational strain in bulk Stress-Energy tensor on boundary

Known correlators in 2D CFT

Fourier transform of correlators

A. Kehagias, D.P., F. RIva, A. Riotto (2023)

Prescription

temperature

 $\langle T_{m_1} T_{m_2} \rangle$,

• Find the gravitational strain correlators $\langle h_m, h_{-m} \rangle' = -\frac{1}{\text{Re}\langle T_m T_{-m} \rangle'}, \quad \langle h_m \rangle$

• Integrate the spin-weighted spherical harmonics over the polar angle θ

A. Kehagias, D.P., F. RIva, A. Riotto (2023), Maldacena (2002)

Calculate correlators of the 2D energy-momentum tensor at finite

$$\langle T_{m_1} T_{m_2} T_{m_3} \rangle$$

$$h_{m_1} h_{m_2} h_{m_3} \rangle' = \frac{2 \operatorname{Re} \langle \mathrm{T}_{m_1} \mathrm{T}_{m_2} \mathrm{T}_{m_3} \rangle'}{\prod_i^3 \left(-2 \operatorname{Re} \langle \mathrm{T}_{m_i} \mathrm{T}_{-m_i} \rangle' \right)}$$

Kerr Black Hole Non-Linearity And its estimate in Extremal limit

$$\frac{\langle h_{(\ell_1,m_1)}h_{(\ell_2,m_2)}h_{(\ell_1+\ell_2,m_1+m_2)}\rangle}{\langle h_{(\ell_1,m_1)}^2\rangle\langle h_{(\ell_2,m_2)}^2\rangle} = \frac{6\sqrt{2}}{2\pi} - 2C_{\ell_1,\ell_2,\ell_1+\ell_2}^{m_1,m_2,m_1+m_2} \frac{G_{3,3}^{3,3} \left(\begin{array}{c} -im_1, & 0, & im_2\\ 1-im_1, & 1, & 1+im_2 \end{array}\right)}{|\Gamma\left(2-i(m_1+m_2)\right)|^2}$$

$$\frac{\langle h_{(2,2)}h_{(2,2)}h_{(4,4)}\rangle}{\langle h_{(2,2)}^2\rangle^2} \simeq 0.62 \cdot \frac{5}{24}\sqrt{\frac{7}{\pi}} \simeq 0.19 \quad \text{vs} \qquad \frac{\left|A_{(4,4)}^{(2,2,0)\times(2,2,0)}\right|}{\left|A_{(2,2,0)}\right|^2} = 0.1637 \pm 0.0018$$
$$\frac{\langle h_{(2,2)}h_{(3,3)}h_{(5,5)}\rangle}{\langle h_{(2,2)}^2\rangle\langle h_{(3,3)}^2\rangle} \simeq 1.57 \cdot \frac{2}{3}\sqrt{\frac{7}{11\pi}} \simeq 0.47 \quad \text{vs} \qquad \frac{\left|A_{(2,2,0)\times(3,3,0)}^{(2,2,0)\times(3,3,0)}\right|}{\left|A_{(2,2,0)}\right|\left|A_{(3,3,0)}\right|} = 0.4735 \pm 0.006$$

A. Kehagias, D.P., F. RIva, A. Riotto (2023)

Non-Linearities for non-extremal Kerr/CFT works only in the extremal case

Summary and outlook Non-Linearities are large but their magnitude can be understood

Crucial for the future of Gravitational Wave analysis

A lot of techniques are being developed to evaluate them

 Could be captured by symmetry, but still unclear outside extremal case

Results with exact definition of C

$$\frac{\langle h_{(\ell_1,m_1)}h_{(\ell_2,m_2)}h_{(\ell_1+\ell_2,m_1+m_2)}\rangle}{\langle h_{(\ell_1,m_1)}^2\rangle\langle h_{(\ell_2,m_2)}^2\rangle} = \frac{6\sqrt{2}}{2\pi} - 2C_{\ell_1,\ell_2,\ell_1+\ell_2}^{m_1,m_2,m_1+m_2} \frac{G_{3,3}^{3,3} \begin{pmatrix} -im_1, & 0, & im_2\\ 1-im_1, & 1, & 1+im_2 \end{pmatrix}}{|\Gamma\left(2-i(m_1+m_2)\right)|^2}$$

$$-2C_{\ell_{1},\ell_{2},\ell_{3}}^{m_{1},m_{2},m_{3}} = 2\pi \int_{0}^{\pi} d\theta \sin\theta - 2Y_{(\ell_{1},m_{1})-2}Y_{(\ell_{2},m_{2})2}\overline{Y}_{(\ell_{3},m_{3})}$$

$$= \frac{\Gamma\left(-2+\sum_{i=1}^{3}\frac{|m_{i}|}{2}\right)\Gamma\left(4+\sum_{i=1}^{3}\frac{|m_{i}|}{2}\right)}{2\sqrt{\pi}\Gamma\left(2+\sum_{i=1}^{3}|m_{i}|\right)} \left(\prod_{i=1}^{3}\frac{(2|m_{i}|+1)!}{(|m_{i}|+2)!(|m_{i}|-2)!}\right)^{1/2}$$

A. Kehagias, D.P., A.Riotto and F. Riva, gr-qc/2301.09345

Full Teukolsky equations

 $\Psi_s(t,r,\theta,\phi) =$

$$\Delta^{-s} \frac{\mathrm{d}}{\mathrm{d}r} \left(\Delta^{s+1} \frac{\mathrm{d}R}{\mathrm{d}r} \right) + \left(\frac{K^2 - is(\mathrm{d}\Delta/\mathrm{d}r)K}{\Delta} + 4is\omega r - \lambda_\omega \right) R = 0$$

$$\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}S}{\mathrm{d}\theta} \right) + \left(a^2 \omega^2 \cos^2\theta - \frac{m^2}{\sin^2\theta} - 2a\omega s \cos\theta - \frac{2ms\cos\theta}{\sin^2\theta} - s^2\cot^2\theta + s + A \right) S = 0$$

$$(1)$$

$$= e^{-i\omega t} e^{im\phi} S(\theta) R(r)$$

$$r^{2} + a^{2})\omega - am$$
$$4 + a^{2}\omega^{2} - 2am\omega$$

M. Cheung et al. (2022)

Second-order amplitudes from linear amplitudes are sizeable

M. Cheung et al. (2022)

Second-order amplitudes from linear amplitudes are sizeable

Near Horizon Extremal Kerr geometry Zooming close to the Horizon

$$ds^{2} = 2M^{2}\Gamma(\theta) \left[-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + d\theta^{2} + \Lambda^{2}(\theta)(d\phi + rdt)^{2} \right]$$
$$\Gamma(\theta) = \frac{1 + \cos^{2}\theta}{2}, \quad \Lambda(\theta) = \frac{2\sin\theta}{1 + \cos^{2}\theta}$$

Isometry group $SL(2, \mathbb{R}) \otimes U(1)$

J. M. Bardeen et al. (1999)

NHEK is a warped AdS_3 geometry

Asymptotic symmetry group Non-trivial symmetries at the boundary of AdS

Boundary conditions on $\,AdS_3\,$

$$h_{\mu\nu} = \begin{pmatrix} h_{tt} = \mathcal{O}(r^2) & h_{t\phi} = \mathcal{O}(1) & h_{t\theta} = \mathcal{O}(r^{-1}) & h_{tr} = \mathcal{O}(r^{-2}) \\ h_{\phi t} = h_{t\phi} & h_{\phi\phi} = \mathcal{O}(1) & h_{\phi\theta} = \mathcal{O}(r^{-1}) & h_{\phi r} = \mathcal{O}(r^{-1}) \\ h_{\theta t} = h_{t\theta} & h_{\theta\phi} = h_{\phi\theta} & h_{\theta\theta} = \mathcal{O}(r^{-1}) & h_{\theta r} = \mathcal{O}(r^{-2}) \\ h_{rt} = h_{tr} & h_{r\phi} = h_{\phi r} & h_{r\theta} = h_{\theta r} & h_{rr} = \mathcal{O}(r^{-3}) \end{pmatrix}$$

Diffeomorphism which preserve the boundary conditions, w/o the trivial ones

$$\xi_m = \epsilon_m(\phi) \partial_\phi - r \epsilon'_m(\phi) \partial_r$$

 $\epsilon_m(\phi) = -e^{-im\phi}$

Kerr NHEK transformation

$$t = \frac{\lambda \hat{t}}{2M}, \quad r = \frac{\hat{r} - M}{\lambda M}, \quad \phi = \hat{\phi} - \frac{\hat{t}}{2M},$$
$$\lambda \to 0 \quad \text{keeping } (t, r, \phi, \theta) \text{ fixed}$$

$$H_{-1} = \partial_t,$$

$$H_0 = t\partial_t - r\partial_r,$$

$$H_1 = \left(\frac{1}{2r^2} + \frac{t^2}{2}\right)\partial_t - tr\partial_r - Q_0 = -\partial_\phi$$

Generators of isometry group $-\frac{1}{-}\partial_{\phi},$ $\mathrm{SL}(2,\mathbb{R})\otimes U(1)$

M. Guica et al. (2008)

Typical values for Black Hole QNMs

$\ell=2,\ n=0$					
a	m = 2	m = 1	m = 0	m = -1	m = -2
0.00	.3737, .0890	.3737, .0890	.3737, .0890	.3737, .0890	.3737, .0890
0.10	.3870, .0887	.3804, .0888	.3740, .0889	.3678, .0890	.3618, .0891
0.20	.4021, .0883	.3882,.0885	.3751, .0887	.3627, .0889	.3511, .0892
0.30	.4195, .0877	.3973, .0880	.3770, .0884	.3584, .0888	.3413, .0892
0.40	.4398,.0869	.4080, .0873	.3797, .0878	.3546, .0885	.3325,.0891
0.50	.4641, .0856	.4206, .0862	.3833, .0871	.3515, .0881	.3243, .0890
0.60	.4940, .0838	.4360, .0846	.3881, .0860	.3489, .0876	.3168,.0890
0.70	.5326, .0808	.4551, .0821	.3941, .0845	.3469, .0869	.3098, .0887
0.80	.5860, .0756	.4802,.0780	.4019, .0822	.3454,.0860	.3033, .0885
0.90	.6716, .0649	.5163, .0698	.4120, .0785	.3444, .0849	.2972,.0883
0.98	.8254,.0386	.5642, .0516	.4223, .0735	.3439, .0837	.29270881

 $M\omega$

