MATHUSLA

Status and Prospects for an Optimised Geometry

Cristiano Alpigiani
on behalf of the MATHUSLA Collaboration

Physics Beyond Collider Annual Workshop 25 March 2024

Dedicated detector sensitive to neutral LLP with lifetime up to BBN

Proposed a large area surface detector located above CMS

Robust tracking + excellent background rejection

Floor detectors to reject interactions occurring near the surface

Extruded scintillators + SiPMs (good

Beam line

time/space resolution)

<u>arXiv:2005.02018</u> (Test stand) <u>arXiv:2009.01693</u> (update LoI) <u>arXiv:2203.08126</u> (Snowmass22)

Rescoping MATHUSLA after P5

- P5 not recommended DOE to fund MATHUSLA at its full 100 m x 100 m scale
- MATHUSLA can do leading LLP searches (hadronic decays in the 10-100 GeV range)
 with a reduced size
 - Need to rescope the detector to make it affordable
- Investigated the possibility of housing a MATHUSLA-like detector in existing buildings near ATLAS and CMS
 - Still ongoing discussion (expected more concrete conclusions in the coming months)
- Lot of work done over the past 3 months (many studies are still ongoing)
 - Today we want to present a preliminary layout

New Geometrical DRAFT Proposal - Overview

Attribute	Pre-P5 benchmark	New proposal	Comment
Position	Near CMS, ~ centered on beamline	Same	Wall closest to IP is at same place on surface
Area	100 m x 100 m	40 m x 40 m	
Excavation	About 20 m below grade	NONE	Huge reduction in infrastructure costs
Modularity	9x9 m² modules, 1 m gap	Probably the same - TBC	
Number of tracking layers	6 (ceiling) + 2 (mid) = 8	4 (ceiling) - TBC	Detailed GEANT studies ongoing
Vertical sensor layer layout	2 in floor, 2 in middle, 6 in ceiling	2 in floor, 4 in ceiling (mid TBC)	Detailed GEANT studies ongoing
Tracker installation	Crane assemblies above tracker	Space-optimised solutions under studies with engineers	Height is now at premium due to max building height of 17 m at CMS and no excavation
Height of decay volume	25 m	~12 m	
Total Decay volume	250,000 m ³	~20,000 m³	We can roughly expect new proposal to have 1/10 the signal sensitivity as the old big one (TBC)

Goal to reduce both infrastructure and detector costs to roughly 1/10 of original design

New Geometrical DRAFT Proposal - CMS Site

Discussion with CMS still ongoing

New Geometrical DRAFT Proposal - Details 1

Side view with CMS

Top view of MATHUSLA only: sensors divided into ~ 9 m x 9 m area modules with ~1 m gap

Vertical structure detail (not showing any mechanical supports etc) for a single 9 m x 9 m sensor module

New Geometrical DRAFT Proposal - Details 2

Side view with CMS

Top view of MATHUSLA only: sensors divided into ~ 9 m x 9 m area modules with ~1 m gap

Vertical structure detail (not showing any mechanical supports etc) for a single 9 m x 9 m sensor module

New Geometrical DRAFT Proposal - Details 3

Simulation and Track Reconstruction

- Conducted full GEANT track and vertex reconstruction studies for old 100 m geometry
 - Closely reproduced signal acceptances of purely geometric FastSim (<u>2308.05860</u>)
- Reconstruction studies are currently being repeated for the new geometry
- GEANT studies of backgrounds ongoing
 - Don't expect backgrounds to be an issue for the primary physics case (high-multiplicity DVs)

Civil Engineer Studies

Working with Canadian engineering support to develop CDR-level engineering concepts for the new detector geometry

- For simplicity, assume MATHUSLA housed in a "standard aircraft-hangar" 17 m tall
 - Standard templates are available
 - Crucial input: thickness of the roof to span 40 m, with the detector starting just below the roof
- Design a support structure for the detector layers that likely uses much less steel than original estimate
- Study conceptual engineering design for the whole detector
 - How to join and support scintillator bars into a sub-plane, then a 9 m x 9 m plane,
 then how to arrange and attach/install those in the superstructure
- Examine how to install vertical detector planes in the back wall (if added)

MATHUSLA (new) Test Stand (UVic)

Small scale prototype MATHUSLA module

- 4 layers of scintillators
- 32 WLSF connected to 64 SiPM array
- Orientation rotated by layer

DAQ

- CAEN Janus on ubuntu machine
- 1 min data collection loop
- OR64 Trigger
- 300 ns timing window
- Writes ~230 MB/min in binary format (converted into 7MB ROOT file)

MATHUSLA (new) Test Stand (UVic)

Temperature - Time of Arrival correlation studies

MATHUSLA (new) Test Stand (UVic)

- Analysis selection
 - Hits have Δt consistent with being inside a scintillator bar
 - Each event has at least one hit in each layer
 - ±5 cm linear gaussian smear applied
- Selects 1623 events (~0.02 Hz)

Ongoing work on track reconstruction and trigger selection

Conclusions

- Following P5 outcome, we are studying a new layout with a smaller size (less detector layers) and fully on the surface
- Exploring alternative locations (closer to the IP) in both ATLAS and CMS areas
- Detailed simulations are ongoing to compute the new layout sensitivities
- Working with Canadian engineers to develop a detailed engineering concept for this detector geometry (will then work with CERN civil engineers to finalize the design)
- Good progress with the small scale prototype developed with Canadian fundings