Measurements of electromagnetic dipole moments of unstable particles at LHC

Nicola Neri Università degli Studi and INFN Milano - CERN on behalf the proto-collaboration for Lol

Physics Beyond Collider Annual Workshop CERN, 25-27 March 2024

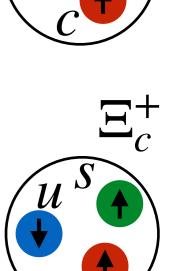
erc

European Research Counci

Outline

- Physics motivations
- Experimental technique
- Proposed experiment
- Physics reach
- Summary

Magnetic dipole moment of charm quark


Spin 1/2 particle magnetic dipole moment (MDM) $\mu = \frac{g}{2} \frac{eQ}{2m}$, where g is the gyromagnetic factor. g = 2 for e, μ, τ (point-like), $g_p = 5.6$ for proton (substructure)

MDM of charm baryons
$$\mu_{\Lambda_c^+} = \frac{g_{\Lambda_c^+}}{2} \frac{e}{2m_{\Lambda_c^+}}$$
 and $\mu_{\Xi_c^+} = \frac{g_{\Xi_c^-}}{2} \frac{e}{2m_{\Xi_c^+}}$

• In the quark model:
$$\Lambda_c^+ = [ud]c$$
, $\mu_{\Lambda_c^+} = \mu_c$, $\Xi_c^+ = [us]c$, $\mu_{\Xi_c^+} = \mu_c$
and $g_{\Lambda_c^+(\Xi_c^+)} = \frac{Q_c m_{\Lambda_c^+(\Xi_c^+)}}{m_c} g_c \approx 0.9 g_c$

- Beyond the quark model, e.g. heavy quark effective theories, theoretical predictions $\mu_{\Lambda_c^+} = (0.34 0.43)\mu_N$, where μ_N is the nuclear magneton
- Determine μ_c , g_c of the charm quark from charm baryon MDM measurements. Confront experimental results with theory predictions

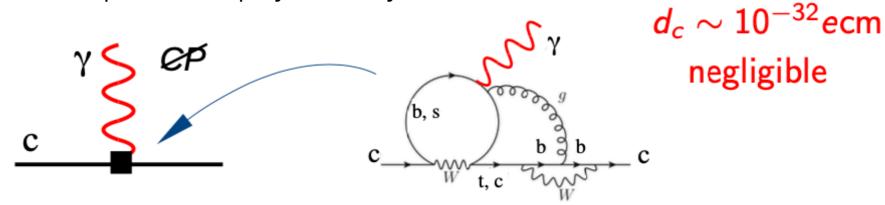
Nicola Neri

1.27 GeV/c²

charm

^{2/3} **C**

Theory predictions for charm baryon MDM

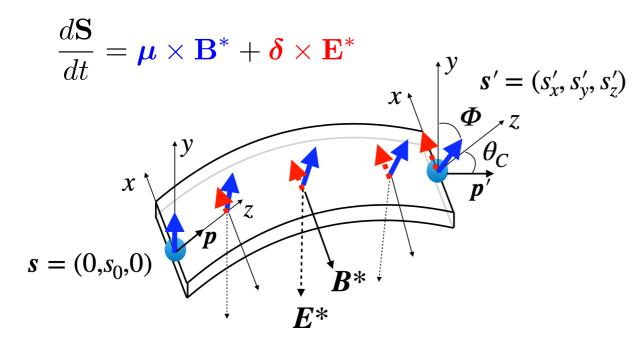

An experimental measurement at 10% precision would be useful to confront with theory predictions

INFN

Electric dipole moment of charm baryons

- Electric dipole moments (EDM, δ) of charm baryons are minuscule in the SM (3-loop level)
- Search for EDM as probe for physics beyond the SM

Indirect limits - from J. Ruiz Vidal slides


Bound	Ref.	Measurement	Method
$ d_c < 8.9 imes 10^{-17}~e{ m cm}$	[Escribano:1993×r]	$\Gamma(Z ightarrow c\overline{c})$	Measurement at the Z peak (LEP). Weights electic (d_c) and weak (d_c^w) dipole moments through model-dependent relations.
$ d_c < 5 imes 10^{-17}$ ecm	[Blinov:2008mu]	$e^+e^- ightarrow c\overline{c}$	The total cross section (from the LEP combination [ALEPH:2006bhb]) is enhanced by the charm EDM vertex $c\overline{c}\gamma$.
$ d_c < 3 imes 10^{-16}~e$ cm	[Grozin:2009jq]	electron EDM	Considers contribution of d_c into d_e through light-by-light scattering (three-loop) diagrams.
$ d_c < 1 imes 10^{-15}$ ecm	[Grozin:2009jq]	neutron EDM	Similar approach than Ref. [Sala:2013osa] with different treatment of diverging integrals and more conservative assumptions.
$ d_c < 4.4 imes 10^{-17}~ecm$	[Sala:2013osa]	neutron EDM	Considers contribution of d_c into d_d via W^{\pm} loops. Expressions from Ref. [CorderoCid:2007uc].
$ d_c < 3.4 imes 10^{-16}~e$ cm	[Sala:2013osa]	$BR(B \rightarrow X_s \gamma)$	Considers contributions of d_c into the Wilson coefficient C_7 .
$ d_c < 1.5 imes 10^{-21}~e$ cm	[Gisbert:2019ftm]	neutron EDM	Renormalization group mixing of d_c into $ ilde{d}_c$.
$ d_c < 6 imes 10^{-22}$ ecm	[Ema:2022pmo]	neutron EDM	Contribution of d_c to $3g$ - 1γ operators, to light-quark, to neutron EDM
$ d_c < 1.3 imes 10^{-20}~e{ m cm}$	[Ema:2022pmo]	electron EDM	Contribution of d_c to 2γ - $2g$ operators, to electron-nucleon, to paramagnetic molecule ThO

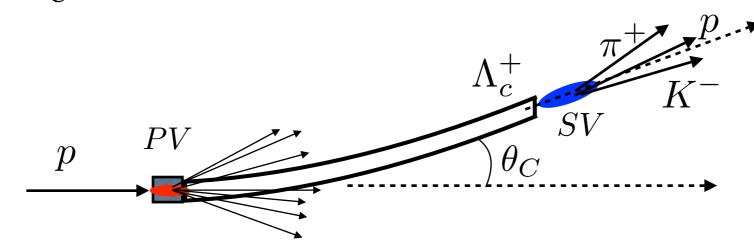
Experimental technique

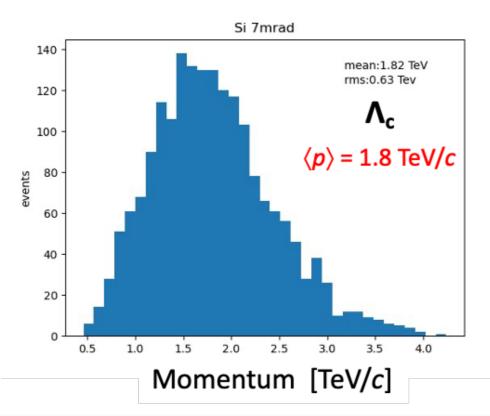
- Charm baryon lifetimes is very short $\tau \approx 2 4 \times 10^{-13}$ s. Challenge: induce spin precession before decay
- Charm baryons from fixed-target *p*W collisions at LHC, $\sqrt{s} \approx 110 \text{ GeV}$
- Exploit channeling in bent crystals at LHC: high boost $\gamma \approx 500$, flight length $\beta \gamma c \tau \approx 3 6$ cm, high electric field $E \approx 1$ GV/cm between atomic planes, effective magnetic field $B \approx 500$ T

MDM μ and EDM δ precession in a bent crystal

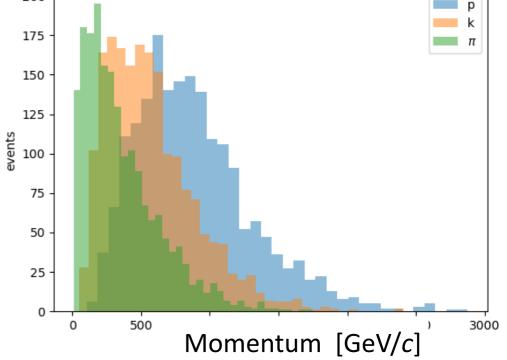
PRD 103, 072003 (2021)

Spin-polarisation analyser $\frac{dN}{d\Omega'} \propto 1 + \alpha s' \cdot \hat{k}$


$$\Phi \approx \frac{g-2}{2} \gamma \theta_C$$
$$s'_x \approx s_0 \frac{d}{g-2} [\cos(\Phi) - 1]$$

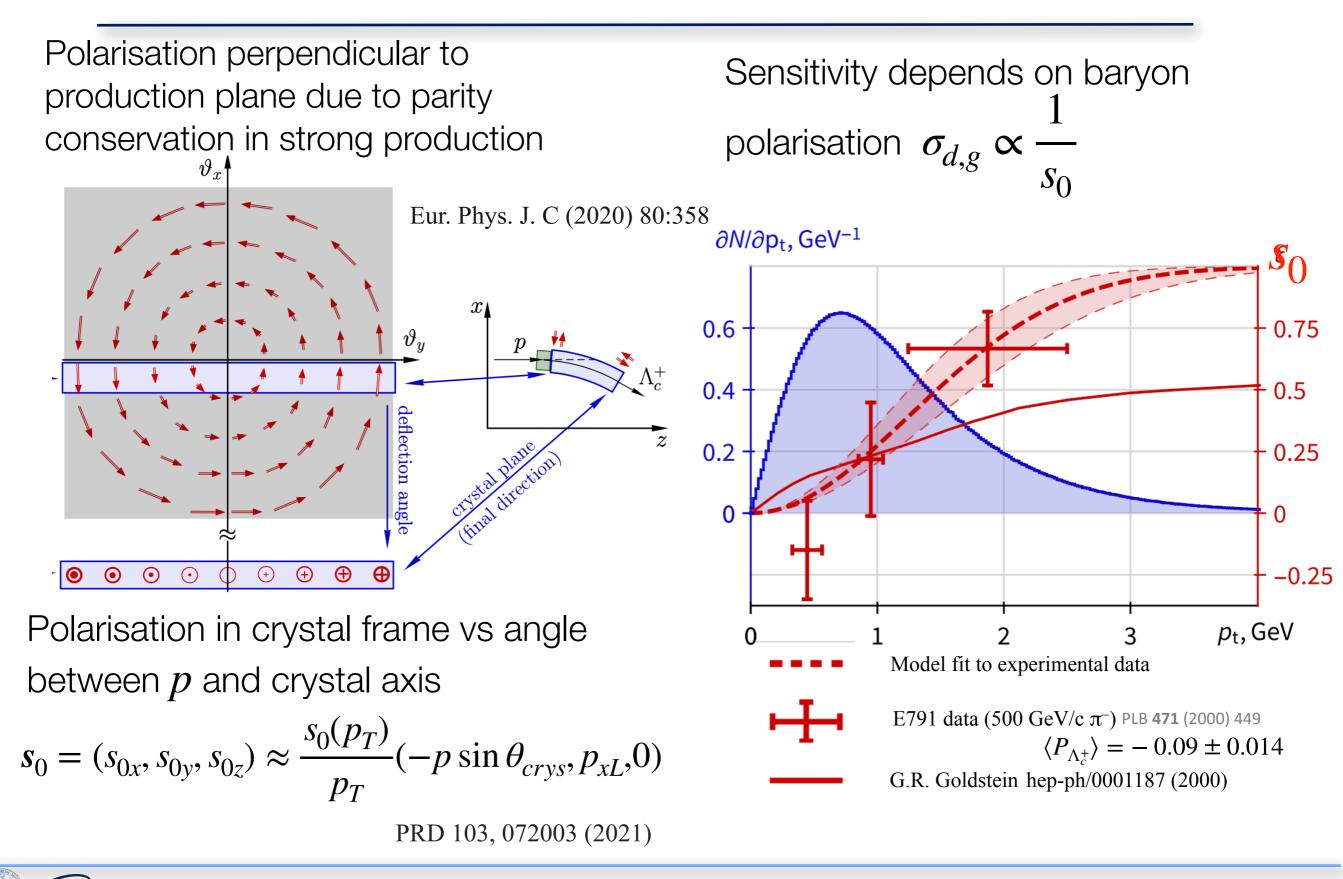

6

Λ_c^+ signal event topology


• Average momentum of 1 TeV for channeled Λ_c^+ baryons for bending angle $\theta_C = 7 \text{ mrad}$

Angular distance between p and Λ_c^+

Momentum distribution of Λ_c^+ daughters Si 7mrad

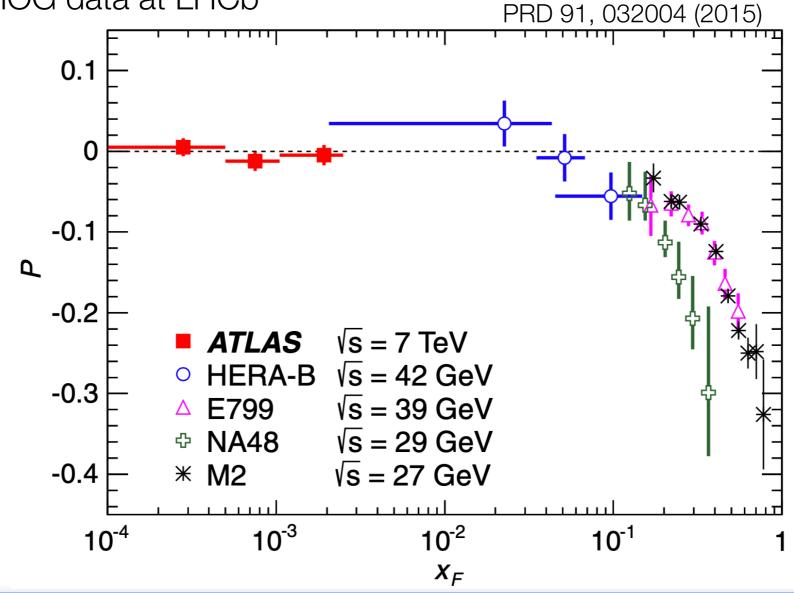

Charm baryons decays of interest

- List of Λ_c^+ , Ξ_c^+ modes and corresponding branching fractions \mathscr{B} , reconstructibility ϵ_{3trk} and effective branching fraction $\mathscr{B}_{eff} = \mathscr{B} \cdot \epsilon_{3trk}$
- Reconstructibility of Σ^+ , Σ^- , Ξ^- as charged stable particles throughout the detector taken into account in ϵ_{3trk}

Λ_c^+ final state	B (%)	ϵ_{3trk}	$\mathcal{B}_{\mathrm{eff}}$ (%)
$pK^{-}\pi^{+}$	6.28 ± 0.32	0.99	6.25
$\Sigma^+\pi^-\pi^+$	4.50 ± 0.25	0.54	2.43
$\Sigma^-\pi^+\pi^+$	1.87 ± 0.18	0.71	1.33
$p\pi^{-}\pi^{+}$	0.461 ± 0.028	1.00	0.46
$\Xi^- K^+ \pi^+$	0.62 ± 0.06	0.73	0.45
$\Sigma^+ K^- K^+$	0.35 ± 0.04	0.51	0.18
pK^-K^+	0.106 ± 0.006	0.98	0.11
$\Sigma^+\pi^-K^+$	0.21 ± 0.06	0.54	0.11
$pK^{-}\pi^{+}\pi^{0}$	4.46 ± 0.30	0.99	4.43
$\Sigma^+\pi^-\pi^+\pi^0$	3.20	0.54	1.72
$\Sigma^-\pi^+\pi^+\pi^0$	2.1 ± 0.4	0.71	1.49
$\Sigma^+[p\pi^0]\pi^-\pi^+$	2.32	0.46	1.06
$\Sigma^+[p\pi^0]K^-K^+$	0.18	0.46	0.08
$\Sigma^+[[p\pi^0]\pi^-K^+$	0.11	0.46	0.05
All		•••	20.2

	A P	10 (01)		10 (01)
Ξ_c^+ final state	$\mathcal{R}B$	B (%)	$\epsilon_{3\mathrm{trk}}$	$\mathcal{B}_{\mathrm{eff}}$ (%)
$\Xi^-\pi^+\pi^+$	1	2.86 ± 1.27	0.64	1.84
$\Sigma^+ K^- \pi^+$	0.94 ± 0.10		0.42	1.14
$\Sigma^+\pi^-\pi^+$	0.48 ± 0.20		0.44	0.60
$pK^{-}\pi^{+}$	0.21 ± 0.04		0.99	0.60
$\Sigma^{-}\pi^{+}\pi^{+}$	0.18 ± 0.09		0.61	0.31
$\Sigma^+ K^- K^+$	0.15 ± 0.06		0.41	0.18
$\Omega^- K^+ \pi^+$	0.07 ± 0.04	•••	0.42	0.08
$\Sigma^+[p\pi^0]K^-\pi^+$	0.48	• • •	0.57	0.79
$\Sigma^+[p\pi^0]\pi^-\pi^+$	0.25		0.57	0.40
$\Sigma^+[p\pi^0]K^-K^+$	0.08		0.59	0.13
All	•••			6.1

Polarisation of charm baryons

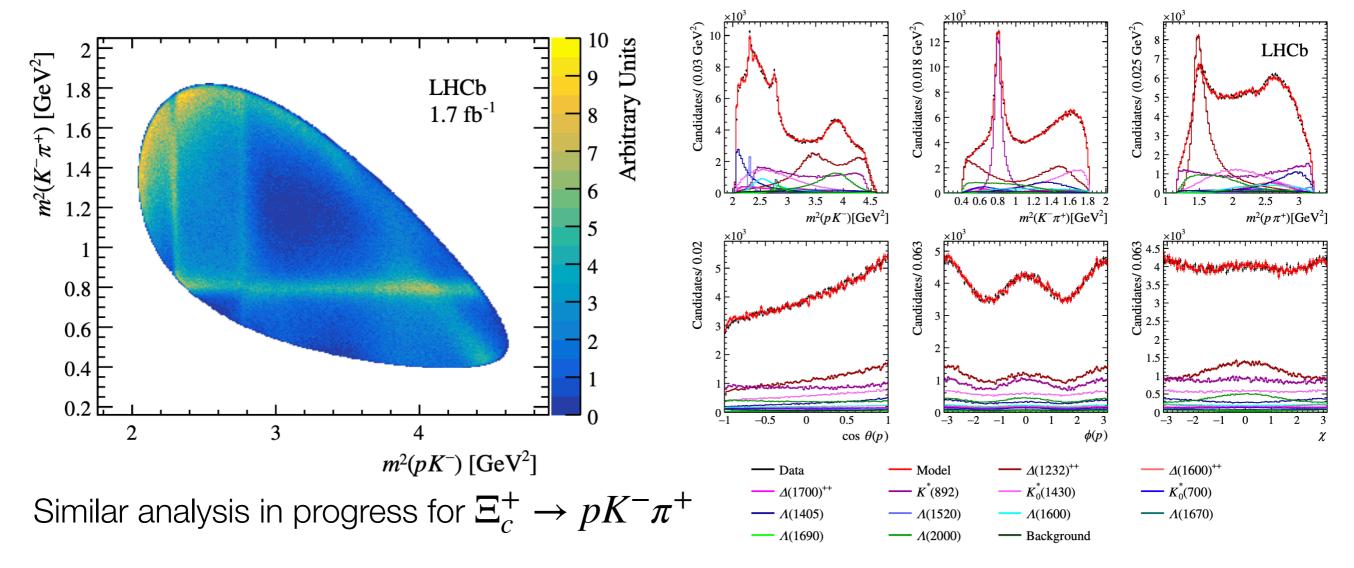


INFN

Indications from Λ baryon polarisation

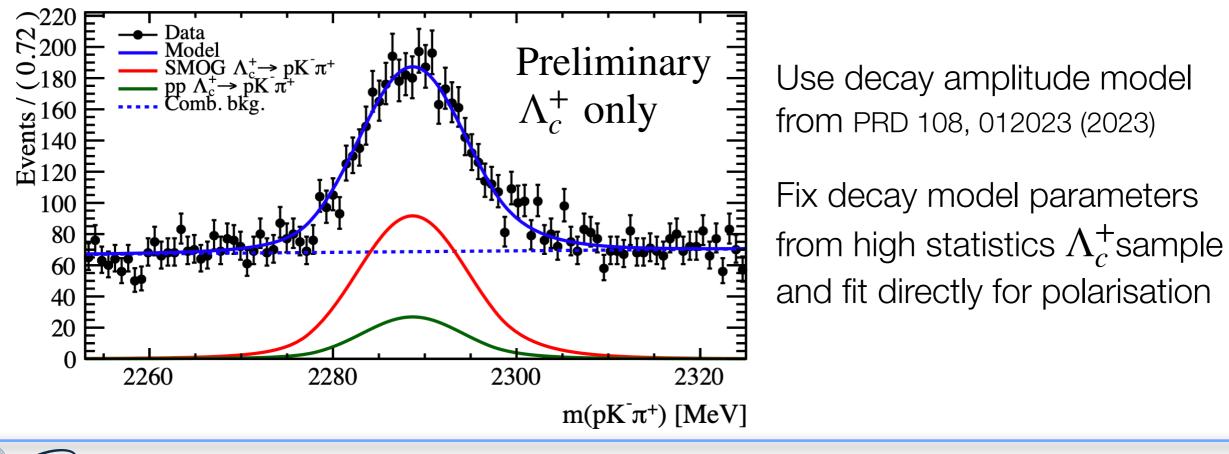
Polarisation increases as a function of Feynman $x_F =$ $\max p_I^*$

- For crystal experiment expect large positive x_F
- Work in progress to produce similar plot for Λ_c^+ with pp collisions and SMOG data at LHCb

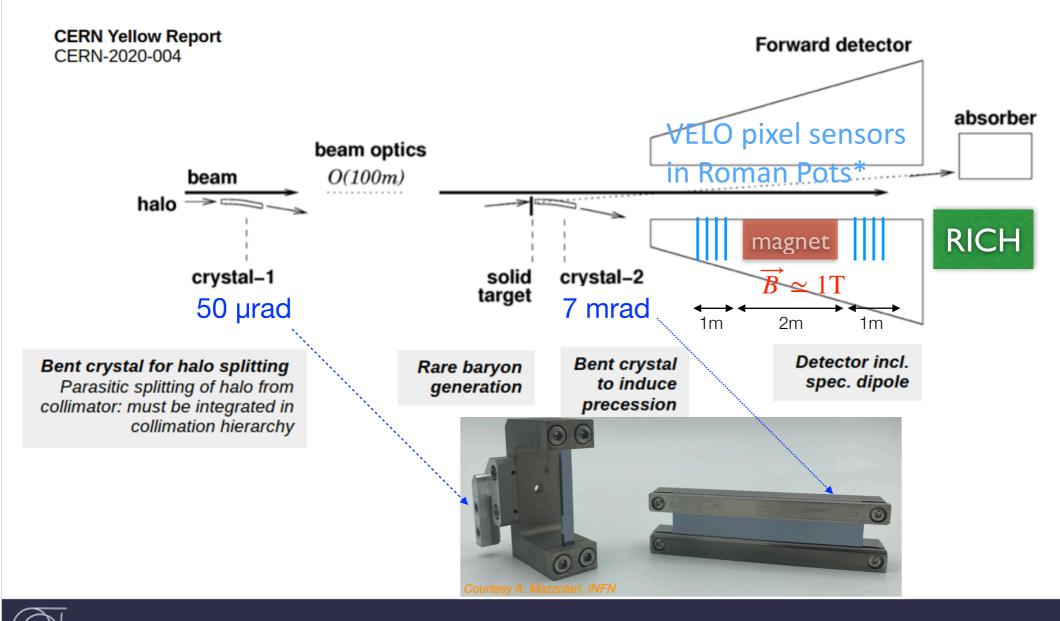


 p_L^*

Preparatory measurements with LHCb data


• Use 400k $\Lambda_c^+ \rightarrow pK^-\pi^+$ signal events from semileptonic beauty hadron decays to determine the **amplitude model and** Λ_c^+ **polarisation**

• Large sensitivity to polarisation. $\Lambda_c^+ \to pK^-\pi^+$ best probe for polarisation measurements of Λ_c^+ produced in fixed-target collisions


Polarisation in *p*-Ne collisions with LHCb SMOG

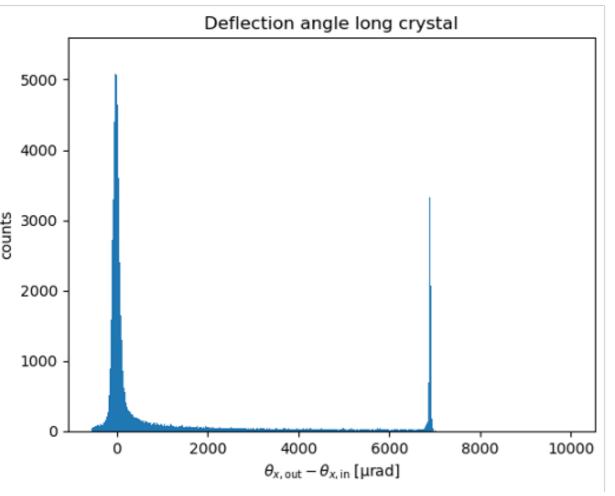
- Λ_c^+ polarisation in *p*W at $\sqrt{s} \approx 110$ GeV is unknown. Measure Λ_c^+ polarisation in LHCb SMOG *p*-Ne collisions at $\sqrt{s} = 68.6$ GeV
- More than 10^{23} PoT: $3k \Lambda_c^+ + \overline{\Lambda}_c^-$ signal yield with $\Lambda_c^+ \to pK^-\pi^+$. Analysis is ongoing, expect 10% uncertainty on polarisation
- Large improvements in Run3 with SMOG2, x1000 increase in signal yield LHCb-PUB-2018-015

INFN

Double-crystal setup: See next talk by Pascal Hermes (CERN-BE) for the proof-of-principle experiment at LHC Crystal based EDM/MDM measurement

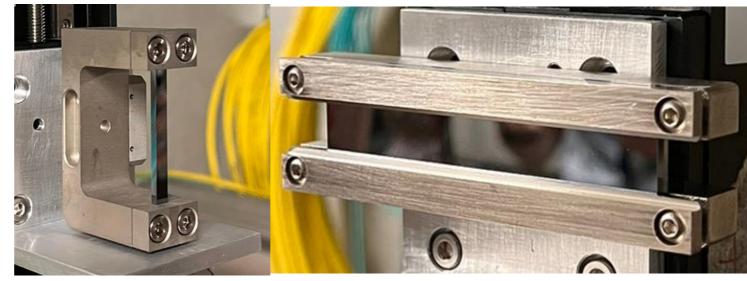
* dedicated experiment solution shown here

- Operational scenario is transparent to high intensity proton operations
- Solid PoP to validate relevant aspects for such an experiment: TWOCRYST
- Lol in preparation for the LHCC review


IR3 Double Crystal Test Stand Proposal | LHC Machine Committee (LMC #467)

Bent crystals

- Bent crystals produced at INFN Ferrara and characterised at SPS H8 with INFN Milano Bicocca/Insubria telescope using 180 GeV/c positive hadron beam (Aug 2023)
- Paper in preparation


SEL:D

Si, 7 mrad, 70 mm

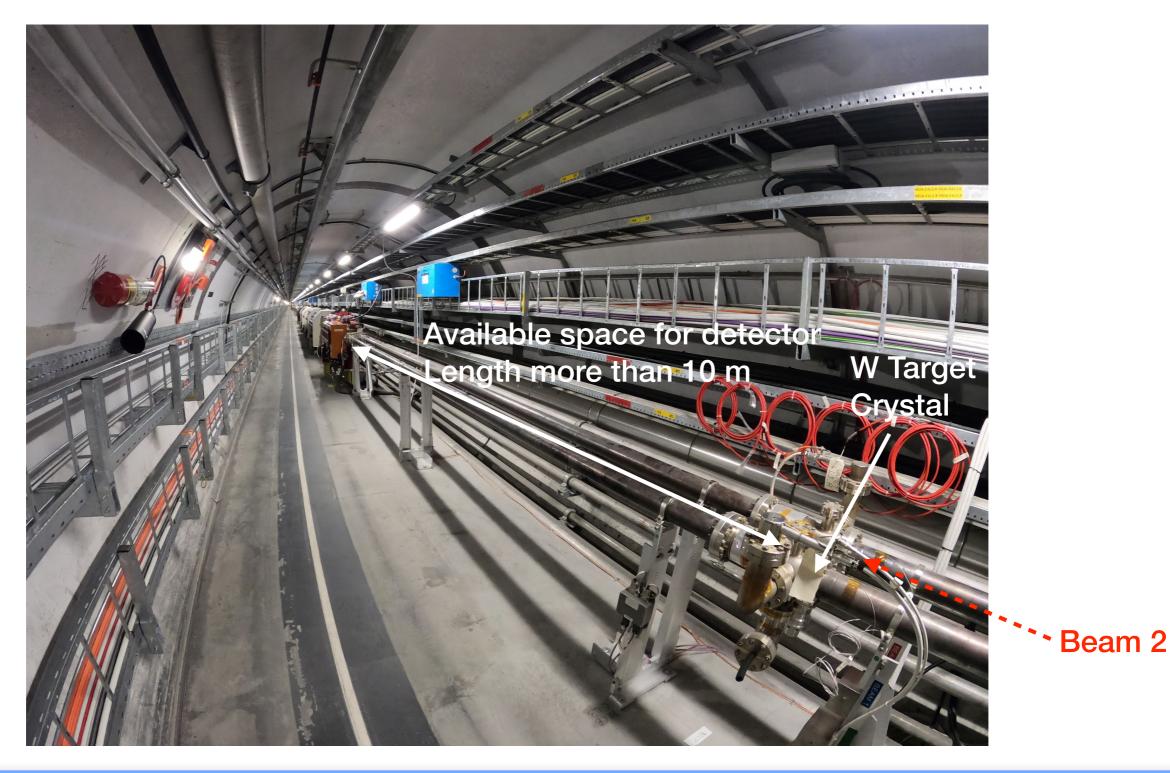
Si, 50 µrad, 4 mm

Si, 7 mrad, 70 mm

Acknowledgments: A. Mazzolari

- Tested in lab for thermal stability and characterisation with X-rays
- Channeling efficiency measurements: 61.0% (50 µrad), 15.7% (7 mrad)

Proposed experiment at LHC

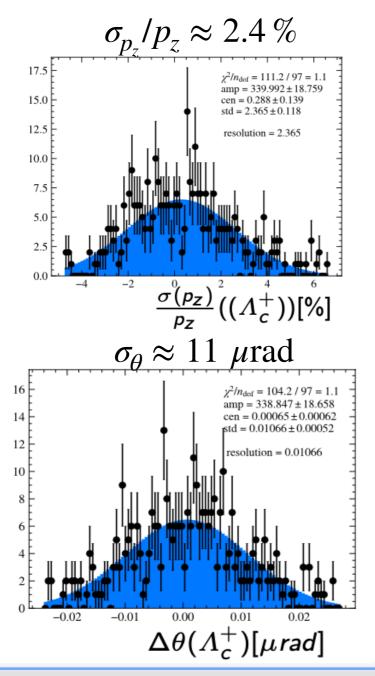

 Two alternatives: i) dedicated experiment at IR3 (baseline); ii) use LHCb detector at IP8 (fallback option)

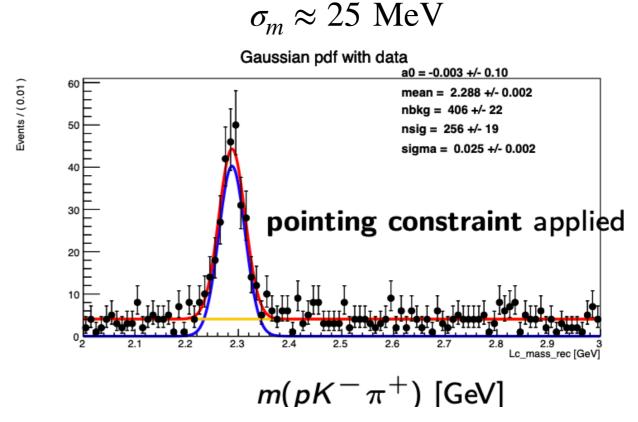
	Pro	Cons	4000			
IR3	Optimal experiment and detector. PID information	More resources needed. New detector, services (long cables, cooling)	E 0 IR3 (momentum IR7 (betatron •			
LHCb	Use existing tracking detector and infrastructure. Experimental area	No PID for p>100 GeV. Potential interference with LHCb core program	 -2000 IR2 (ALICE, IR8 (LHCb, injection B1) injection B2) -4000 -4000 -2000 0 0 2000 4000 			
PoP test 2026 2029 PoP test Construction, installation Commissioning, data taking						
	Run3	LS3	Run4			

INFN

LHC IR3: space identified for the experiment

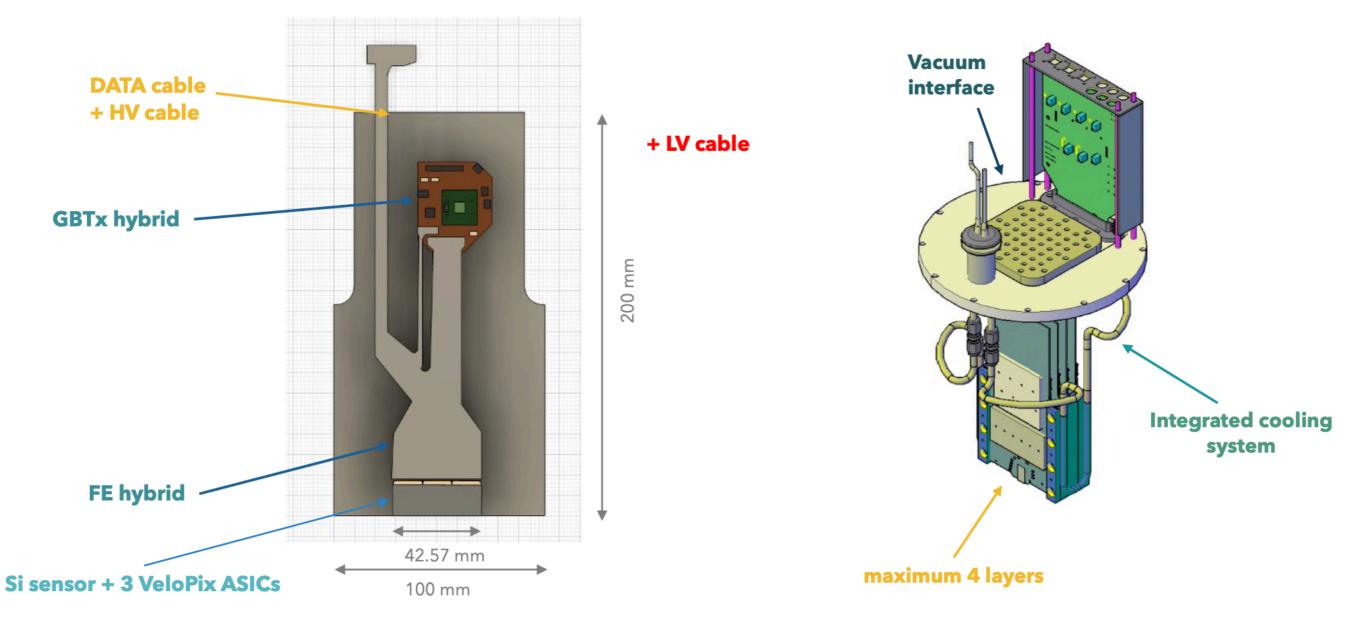
Region for TWOCRYST PoP also suitable for the experiment <u>video</u>


Spectrometer in very forward region


- VELO pixel sensors housed in Roman Pots. Acceptance $\eta > 5$
- ▶ 4 tracking stations: 2 upstream + 2 downstream of the magnet
- Magnet MCBW (1.1 T, 1.7m) available in situ Y 34 W target B = 1.1 T25 -25 70 cm 100 cm 170 cm 100 cm -34 Momentum resolution $\frac{\sigma_p}{p} \approx \frac{2p}{0.3BLD} \sigma_x = 2\%$ with $p = 500 \text{ GeV}, BL = 1.9 \text{ Tm}, D = 100 \text{ cm}, \sigma_x = 10 \ \mu m$ Track angle resolution $\sigma_{\theta} \approx \sqrt{2}\sigma_{x}/D = 14 \ \mu rad$ Impact parameter resolution $\sigma_{x,v} \approx 20 \ \mu m$

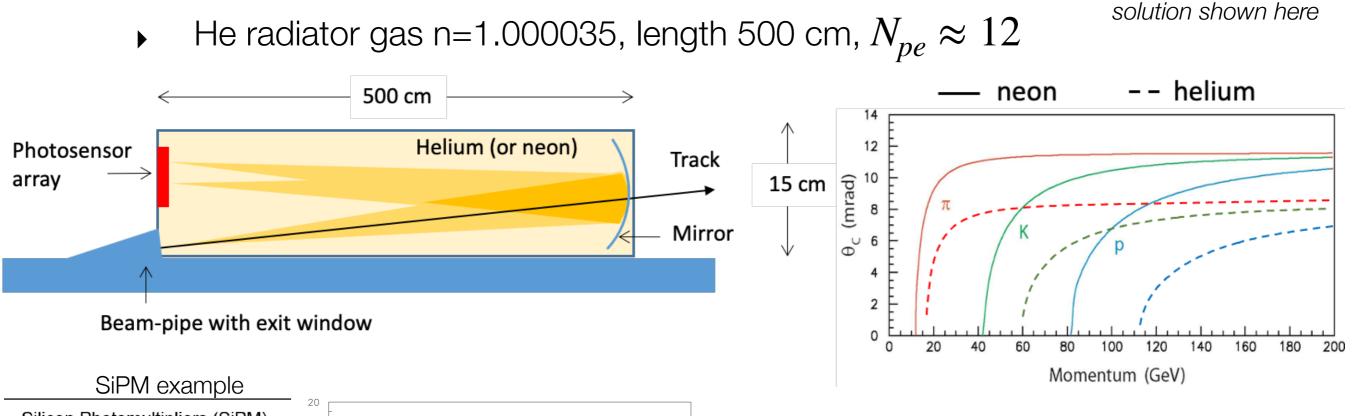
Spectrometer performance

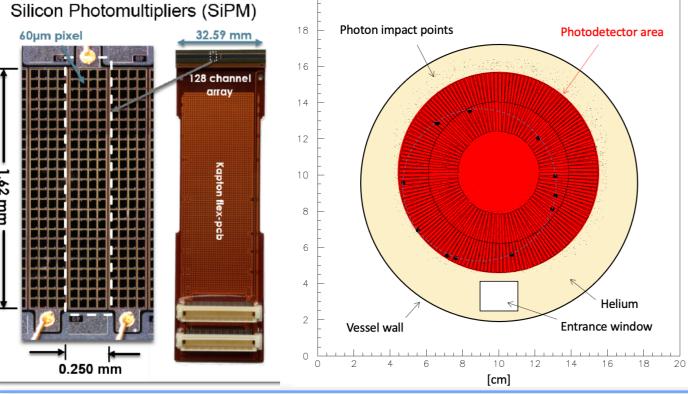
- Good resolutions for signal $\Lambda_c^+ \to p K^- \pi^+$ decays
- Acceptance for signal decays 70% (with modifications to current RP and/or beam pipe geometry)



- Signal acceptance up to 90% and factor 2 improvement in momentum resolution with magnet B=4 T, L=1 m
 - Potential future upgrade: compact magnet in 20K HTS technology

Pixel sensor module


Based on VELO sensors and CMS-Totem mechanics/cooling



Acknowledgements: J. Buytaert, V. Coco, E. Lemos from LHCb VELO group Acknowledgments: N. Turini from CMS-Totem

INFN

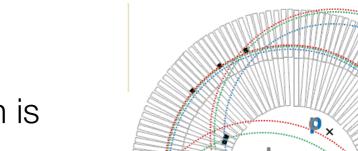
Particle identification with RICH up to 1 TeV

SiPM area 100 cm², $0.5 \times 0.5 \text{ mm}^2$ pixel. mm-scale SiPM pixelisation is a key goal of new DRD4 collaboration

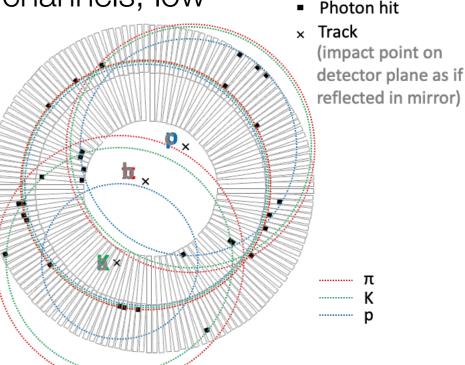
* dedicated experiment

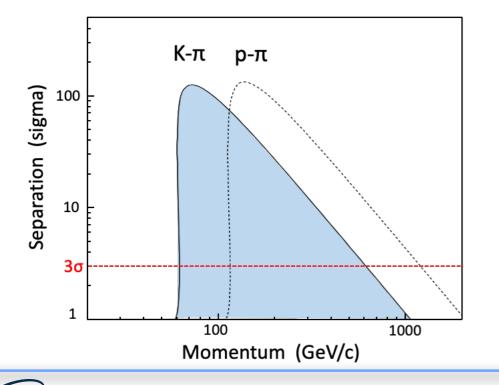
Angular resolution: $\sigma_{\theta} = 42 \ \mu rad$ per photon (chromatic error 32 $\ \mu rad$, emission point error 6 $\ \mu rad$, pixel error 30 $\ \mu rad$)

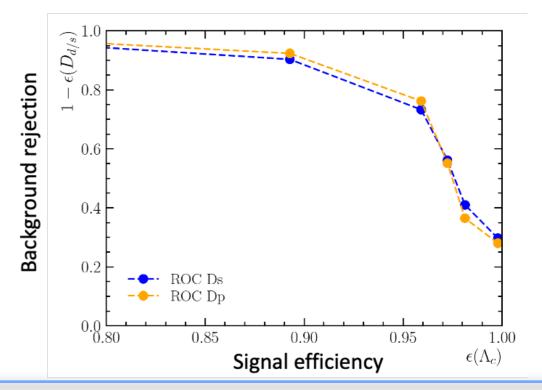
INFN

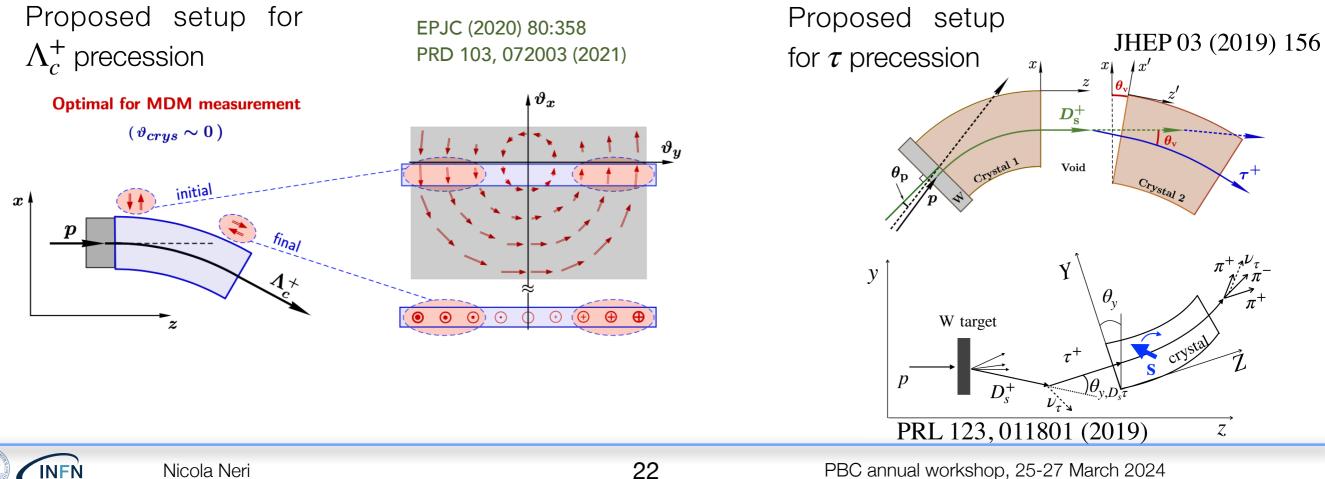

20

Patter recognition: relatively easy thanks to 38k channels, low occupancy 0.1% from signal tracks


Upper limit for 3σ K- π (p- π) separation is 610 GeV/c (1.2 TeV/c)


Particle identification with RICH


Achieve 90% signal retention and 90% bkg rejection comparing $\Lambda_c^+ \to p K^- \pi^+$ (signal) to $D^+ \to K^- \pi^+ \pi^+$, $D^+_s \to K^+ K^- \pi^+$ (bkg)



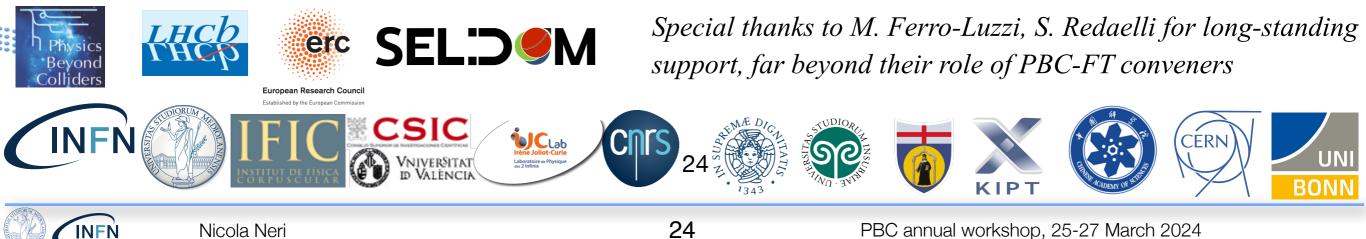
21


Physics reach

- First measurements of charm baryon dipole moments in 2 years data taking assuming 10° p/s on 2 cm W target with Λ_c^+ (Ξ_c^+) polarisation 0.22 (0.20) and use 3-body and 4-body decays
- Sensitivity on MDM $2 \cdot 10^{-2} \mu_N$ and EDM $3 \cdot 10^{-16} e$ cm with $1.4 \cdot 10^{13}$ PoT
- Exploration of τ g-2 and EDM (improvements are required)
- Additional physics topics: charm hadron cross-section measurements and J/ψ photo production in the very forward region at pseudorapidity $\eta > 5$

Technology

- Machine: beam manipulation using bent crystals
 - bent crystals: silicon (Si) with mechanical bending as baseline. Germanium (Ge) and/or anodic bonding as bending technique for potential upgrade
 - deflection of beam halo towards W target
 - goniometers for precision bent crystal positioning
- **Detector**: compact with high granularity, covers very forward region ($\eta \geq 5$)
 - LHCb VELO silicon pixel sensors inside Roman Pots (from ATLAS-ALFA)
 - RICH detector for p, K, π PID up to 1 TeV energies. SiPM pixelisation below 1 mm
 - Magnet: compact spectrometer dipole magnet
 - warm dipole magnet already available in situ (1.9 T m) as baseline
 - Compact dipole magnet with higher field (4.0 T m) in 20K HTS technology for potential future upgrade


Proponents of the Lol (being finalised)

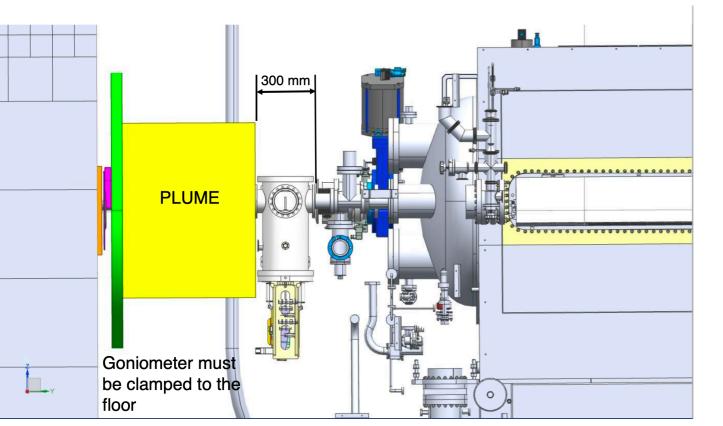
M. Benettoni¹⁰, R. Cardinale⁷, S. Cesare⁸, M. Citterio⁸, S. Coelli⁸, A. S. Fomin³, R. Forty¹, J. Fu⁶, P. Gandini⁸, M. A. Giorgi¹¹, J. Grabowski⁵, S. J. Jaimes Elles², A. Yu. Korchin⁴, E. Kou³, S. Libralon², G. Lamanna¹¹, C. Maccani^{1,10}, D. Marangotto⁸, F. Martinez Vidal², J. Mazorra de Cos², A. Merli⁸, H. Miao⁶, N. Neri^{1,8}, S. Neubert⁵, A. Petrolini⁷, J. Pinzino¹¹, M. Prest⁹, P. Robbe³, L. Rossi⁸, J. Ruiz Vidal², I. Sanderswood², A. Sergi⁷, G. Simi¹⁰, M. Sorbi⁸, M. S. Sozzi¹¹, E. Spadaro Norella⁷, A. Stocchi³, G. Tonani^{2,8}, N. Turini¹², E. Vallazza⁹, S. Vico Gil², M. Wang⁸, Z. Wang⁸, T. Xing⁸, M. Zanetti¹⁰, F. Zangari⁸, Y. Zheng⁶

¹CERN, ²IFIC Univ. of Valencia - CSIC, ³IJCLab, ⁴NSC KIPT, Karkhiv, ⁵Univ. of Bonn, ⁶UCAS, ⁷UniGe & INFN Genova, ⁸UniMi & INFN Milano, ⁹Uninsubria & INFN Milano Bicocca, ¹⁰UniPd & INFN Padova, ¹¹UniPi & INFN Pisa, ¹²UniSi & INFN Pisa

With support from PBC and TWOCRYST collaborators for the machine PoP

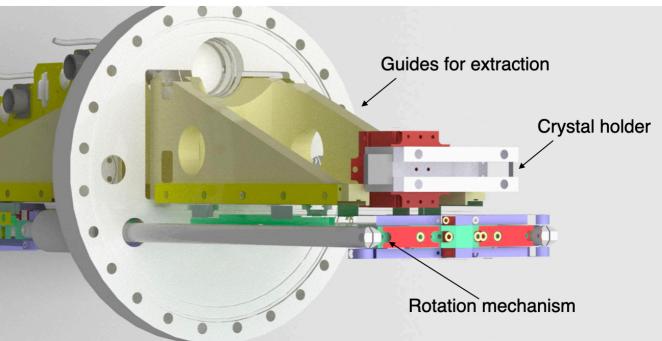
Series of topical workshops: <u>1st</u>, <u>2nd</u>, <u>3rd workshop</u>

References for charm baryons


- 1. V. G. Baryshevsky, The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals, Phys. Lett. B757 (2016) 426.
- 2. L. Burmistrov, G. Calderini, Yu Ivanov, L. Massacrier, P. Robbe, W. Scandale, A. Stocchi, *Measurement of short living baryon magnetic moment using bent crystals at SPS and LHC*, CERN-SPSC-2016-030 ; SPSC-EOI-012.
- 3. F. J. Botella, L. M. Garcia Martin, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, A. Oyanguren, J. Ruiz Vidal, *On the search for the electric dipole moment of strange and charm baryons at LHC*, Eur. Phys. J. C 77 (2017) 181.
- 4. L. Henry, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, P. Robbe, J. Ruiz Vidal, CERN- LHCb-INT-2017-011, *Proposal to* search for baryon EDMs with bent crystals at LHCb.
- 5. V. G. Baryshevsky, On the search for the electric dipole moment of strange and charm baryons at LHC and parity violating (P) and time reversal (T) invariance violating spin rotation and dichroism in crystal, arXiv:1708.09799 (2017).
- A.S. Fomin, A.Yu. Korchin, A. Stocchi, O.A. Bezshyyko, L. Burmistrov, S.P. Fomin, I.V. Kirillin, L. Massacrier, A. Natochii, P. Robbe, W. Scandale, N.F. Shul'ga, *Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals*, JHEP 08 (2017) 120.
- 7. E. Bagli, L. Bandiera, G. Cavoto, V. Guidi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Mazzolari, A. Merli, N. Neri, J. Ruiz Vidal, *Electromagnetic dipole moments of charged baryons with bent crystals at the LHC*, Eur. Phys. J. C 77 (2017) 828.
- 8. A. S. Fomin, S. Barsuk, A. Yu. Korchin, V.A. Kovalchuk, E. Kou, A. Natochii, E. Niel, P. Robbe, A. Stocchi, *The prospects of charm quark magnetic moment determination*, Eur. Phys. J. C **80**, 358(2020).
- S. Aiola, L. Bandiera, G. Cavoto, F. De Benedetti, J. Fu, V. Guidi, L. Henry, D. Marangotto, F. Martinez Vidal, V. Mascagna, J. Mazorra de Cos, A. Mazzolari, A. Merli, N. Neri, M. Prest, M. Romagnoni, J. Ruiz Vidal, M. Soldani, A. Sytov, V. Tikhomirov, E. Vallazza, *Progress towards the first measurement of charm baryon dipole moments*, PRD 103, 072003 (2021).

References for τ lepton and machine

- A.S. Fomin, A. Korchin, A. Stocchi, S. Barsuk, P. Robbe, *Feasibility of τ lepton electromagnetic dipole moments measurements using bent crystals at LHC*, JHEP 03 (2019) 156.
- J. Fu, M. A. Giorgi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, J. Ruiz Vidal, *Novel method for the direct measurement of the τ lepton dipole moments*, Phys. Rev. Lett. 123, 011801 (2019)
- 12. D. Mirarchi, A. Fomin, S. Redaelli, W. Scandale, *Layouts for fixed-target experiments and dipole moment measurements of short-lived baryons using bent crystals at the LHC*, Eur. Phys. J C 80 (2020) 10, 929



Fixed-target setup upstream of LHCb

 Goniometer for target+crystal positioned in the region upstream of the LHCb detector, close to the VELO

- Goniometer internal structure: compatible with operations in ultra-high vacuum
- Impedance studies ongoing

Spectrometer for a dedicated experiment at IR3

- Channeled Λ_c^+ in bent crystal are very focused in few cm²
- Preliminary simulations: with 8
 VELO tiles + existing 1.9Tm
 dipole magnet in situ can build
 a spectrometer

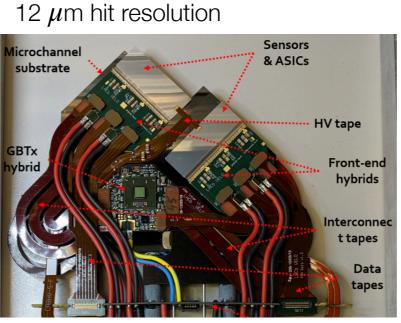
Hit distribution for $\Lambda_c^+ \to pK^-\pi^+$ Area \approx few cm². rate \approx 100 MHz/cm² Last tracker station at z=0.4 m from magnet

Vertex Locator

(inside beam pipe)

1 2 3 4

Dipole


magnet

Tracker

(inside beam pipe)

5 6 7 8

for Vertex and Tracker stations 1 cm from the beam 55x55 μ m² pixel, pixel hit rate 600 MHz/cm²,

LHC orbit correction dipole MCBW (1.7

Tracker (outside beam pipe)

9 10 11 12

m, 1.1 T) is considered for the spectrometer (Credits: Pascal Hermes, CERN)

