TWOCRYST: A proof-of-principle for a double-crystal based FT experiment at the LHC

Pascal Hermes On behalf of the TWOCRYST Collaboration

> Physics Beyond Colliders Annual Workshop CERN, Geneva, Switzerland

> > 25.03.2024

TWOCRYST contributor list

CERN

C. Antuono, G. Arduini, M. Calviani, M. D'Andrea,
M. Deile, Q. Demassieux, K. Dewhurst, M. Di Castro,
L. Esposito, M. Ferro-Luzzi, H. Havlikova, P. Hermes,
S. Jakobsen, C. Maccani, E. Matheson, D. Mirarchi,
A. Perillo Marcone, S. Redaelli, B. Salvant,
R. Seidenbinder, S. Solis Paiva, E. Soria, C. Zannini

IJCLab, France

P. Robbe, A. Stocchi

INFN Ferrara

L. Bandiera

INFN Ferrara and University of Ferrara

V. Guidi, L. Malagutti, A. Mazzolari, R. Negrello, M. Romagnoni, M. Tamisari

INFN Milano Bicocca and University of Insubria

S. Carsi, G. Lezzani, M. Prest, E. Vallazza

INFN Milano and University of Milano

S. Cesare, S. Coelli, F. De Pretto, P. Gandini, D. Marangotto, A. Merli, N. Neri, E. Spadaro Norella*, G. Tonani, F. Zangari * now at INFN Genova and University of Genova

INFN Padova and University of Padova

D. De Salvador, G. Simi, M. Zanetti

INFN Pisa and Pisa University

G. Lamanna, J. Pinzino, M. Sozzi, N. Turini

UCAS, China J. Fu, H. Miao

University of Malta G. Valentino

IFIC, University of Valencia-CSIC, Spain S.J. Jaimes Elles, F. Martinez Vidal, J. Mazzora de Cos, S. Vico Gil

Warsaw University of Technology, Poland M. Patecki

Table of Content

Introduction

The TWOCRYST Proof-of-Principle

Hardware Status

Plans for 2024

MD Program

Conclusions

Particle channelling and deflection in bent crystals

Equivalent deflection to ~300Tm magnet!

Critical angle ⊖_c Precise angular alignment needed

Energy [GeV]	$\boldsymbol{\Theta}_{c}[\boldsymbol{\mu}$ rad]
180	18
450	9.4
7000	2.4

Silicon

Knordlun, CC BY-SA 3.0 via Wikimedia Commons

 Θ_c

Angular

Acceptance

LHC Options for Double-Crystal FT Experiments

Possible LHC B1 layouts and achievable PoT studied by D. Mirarchi et al. (2020)

Regular Article - Experimental Physics Layouts for fixed-target experiments a measurements of short-lived baryons t LHC D. Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael C. B. Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael C. B. Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael C. B. Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael C. B. Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael C. B. Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael C. B. Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael C. B. Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael Mirarchi ^{1,2,4} , A. S. Fonin ^{1,3} , S. Redsell ¹ , W. Scandael Reside i August 2019/ Accepted: 13 September 2010 / Publishel souther Dre Analoxi 2023 a Josoff thal Borsech, Bectrum with main an Of Bordening the physics research spectrum with main and Dre Mandeling the physics research spectrum with main and Dre Mandeling the physics research spectrum with main and Dre Mandeling the Physics research spectrum with main and Dre Mandeling the Hulle Christing research spectrum with main and Dre Mandeling the Hulle Christing the deling target for the Mandeling the deling the physics research spectrum with main and Dre Mandeling the physics research spectrum with the physica Bergond Collider study group, with main and Dre Mandeling the Hulle Christing the term thank physica Bergond Collider study group, with main and Dre Mandeling the physics research spectrum with the physica Bergond Collider study group, with main and Dre Mandeling the physics research spectrum with the available accelerator complex and infrastructure. The spectrum the physica Bergond Collider study group, with main and Dre Mandeling the physics research spectrum with the available accelerator complex and infrastructure. The spectrum the physica Bergond Collider study group, with main and Dresearch spectrum with the physica Berg	and dipole moment using bent crystals at the stortand , Khativ 61108, Ukraine : 8 October 2020 However, it is impossible to use conventional magnets for how-lived baryons such as the A _n , because the achievable
Layouts for fixed-target experiments a measurements of short-lived baryons a LHC D. Mirarchi ^{1,2,4} , A.S. Fonin ^{1,3} , S. Redselli ¹ , W. Scandal ¹ (2DN. Imorpan Organization for Nuclear Research, 1111 Genez 32, So The Universel of Multiclei, Mandenew 1019-L LR. Net Enables (2019) Accepted: 13 September 2020 / Published online Dre Analoto, 2020 Horarchi C. August 2019 / Accepted: 13 September 2020 / Published online Dre Analoto, 2023 Matract. Several studies are on-going at CERN in the a nai and forbacing the physics research spectrum using the available accelerator complex and infrastructure. The possibility to design a layout that allows fixed-barget exper- ments in the primary vacuum of the CERN Large Hadron in is, ip art of the unifies. The principle of the layouts researcd in this paper is to deflect been halo protons on a Voedment dieded in the LHC or innerv acuum. The means of	and dipole moment using bent crystals at the startind , Khativ 61108, Ukraine : 8 October 2020 However, it is impossible to use conventional magnets for how-lived baryons such as the A _n , because the achievable
*NSC Kharkiv Institute of Physics and Technology. 1 Akademicheskays St. Received: 1 August 2019/ Accepted: 13 September 2020 / Published online The Anthon(s) 2020. Nabstract Several studies are on-going at CERN in the 1 Tamework of the Physics Reyord Colled's study group, with s main aim of broadening the physics research spectrum using r he available accelerator complex and infrastructure. The possibility to design a layout that allows fixed-tanget exper- ments in the primary vacuum of the CERN Large Hadron t 2014Ger (LHC), without the need of a dedicated extraction Collider (LHC), without the need of a dedicated extraction research in this paper is to deflect beam halo protons on a Vecd-tareet taleed in the LHC originary vacuum. When means of 1	, Kharkiv 61108, Ukraine : 8 October 2020 However, it is impossible to use conventional magnets for hord-lived baryons such as the A _n , because the achievable
Received: I August 2019/ Accepted: 13 September 2020 / Published online O The Author(s) 2020 Matract Several studies are on-going at CERN in the I frameword of the Publisc Beyord Collider study croup, with a main aim of broadening the physics research spectrum using the available accelerator complex and infrastructure. The possibility to design a layout that allows fixed-target exper- ments in the primary vacuum of the CERN Large Hadron to Zolldier (LHC), without the need of a dedicated extraction in, is part of these studies. The principle of the layouts of resemble in this paper is to dedicet beam halo protons on a two-d-areet dateed on the LHC oringer vacuum. When these of the means of 1	: 8 October 2020 However, it is impossible to use conventional magnets for short-lived baryons such as the A _e , because the achievable
Abstract Several studies are on-going at CERN in the 1 framework of the Physics Beyond Collider study group, with main aim of broadening the physics research spectrum using a flavorable accelerator complex and infrastructure. The possibility to design a byoott that allows fixed-starger expect collider (LFC), when the mode of a dedicating that into its part of these studies. The principle of the layouts of stresmed in this paper is to deflect beam halo protons on a two-darrent facel of the LHC or intravacuum, by means of 1	However, it is impossible to use conventional magnets for short-lived baryons such as the Λ_c , because the achievable
he channeling process in heat crystals. Moreover, the pres- minace of a second bare crystal algoent to the target geness a mique opportunity for the first direct measurement of elec- ric and magnetic dipole noments of alor-trived Paryons. Nov possible layouts are reported, together with a thorough reparations. I Introduction Several studies are on-going at CERN in the framework of the Physics Reyond Collider study group [1]. The main aim is a sases the proterial of the CERN is cockerator complex and magnetic dipole moments. Standard measurement tech- ningers for unstable particles, consist of applying a dipolar megnetic field than decreased on the framework for any structure to expand the physics reach beyond high- mergy colliders, consist of applying a dipolar megnetic field thandees a dipole moment procession. The magnetic dipthulance procession. Thus, the dipole moment structure of processing structure of a physics to account the particles, consist of applying a dipolar megnetic field thandee procession. Thus, the dipole moment structure of the processing structure of the physics the megnetic field thandee procession. Thus, the dipole moment can be informed by measuring such distribution and spectrum.	magnetic field does not induce a measurable precession. A magnetic field does not induce a measurable precession or solution solution overcome this problem is the use of bent reystals [2,3]. The equivalent magnetic field acting on a par- ifield trapped between best crystalling planes can be several induced magnetic building measurable precession over dis- bigled magnets. Inducing measurable precession over dis- tribution of the formula by broth Center on copper anget to produce Σ^+ and measuring its magnetic moment precession in bear to reystals [4]. A 6.5 TeV/c proton beam is novadays available at the circulating beam onto a target placed in the LiCC path mean triggered the idea of an in-vacuum fixed-target appa- ratus. Bent crystals for collimation of the circulating beam, triggered the idea of an in-vacuum fixed-target appa- ratus. Bent crystals can be used to deflect halo particles from here involving based to a discover interaction produces vacuum, allowing a unique opportunity for fixed-target reportment as a haip energy. The successful obser- vation of the hameling with 6.5 TeV/c proton beam formed to the hameling with 6.5 TeV/c proton beam sould been accessible at this energy, making possible to add placemagnet the successible moment is particu- arly interesting because it is closely related to the magnetic moment of the circulating beam onto a target value and particles of the circulating beam onto a target value also attributes and channeled by a second hene crystal also of the privation particles of the circulating beam onto a target value of the magnetic moment is particu- ality and channel of the accessible at target. Where also particles of the circulating beam onto a target value also attributes and channel of the workshow (6.7), where

D. Mirarchi, Eur. Phys. J. C (2020) 80 :929

Motivations for a Proof-of-Principle

25.03.2024

Bent crystals for spin precession (TCCP)

Long precession crystals were so far tested with SPS beams but **never probed in TeV range**

7mrad / 7cm

What are the <u>crystal properties</u> in energy range of interest (~TeV) ?

Figure: courtesy of A. Mazzolari

25.03.2024

Double Crystal Setup in Operation

- Integration in collimation hierarchy
- High angular precision needed for 2 devices
- Operationally challenging

Can a double-crystal setup be reliably <u>operated</u> in the LHC?

Performance estimates

- Performance estimates based on complex combination of particle-matter interaction simulations and symplectic particle tracking
- Relies on tools designed for other applications
- Experimental validation of achievable PoT would strengthen physics case!

What <u>statistics</u> can be reached with the double crystal setup in the LHC?

K. Dewhurst

2025 Proof of Principle - TWOCRYST

Validate crystal properties

Long TCCP crystal: challenging to manufacture with required accuracy

Hadron beam test (NA + SPS): promising results but need data in TeV range

Scaling to TeV to be addressed experimentally

- All uncertainties could be alleviated by a proof-of-principle setup in IR3
- TWOCRYST: A proof-of-principle setup in LHC IR3 for MDs in 2025

Prepare Device Operation

Need to demonstrate operational feasibility + gain experience

Prepare input for experiment design

Experimental validation of simulation based performance estimates

Project Schedule

TWOCRYST inputs

Layout and Devices

CER

Layout

TCCS assembly

TCPC - STI device in collaboration with CEM

TCCS goniometer recovered from LHC IR7

Refurbishment currently ongoing (experts from STI & CEM)

Crystal installation imminent

Cables for motion control installed in YETS23/24

TCCP Assembly (Combined Target and Long Crystal)

TCCP goniometer designed for TWOCRYST (CERN SY-STI)
Independent motion of target and TCCP crystal
Currently procuring raw material for construction
Cables for motion control installed in YETS23/24

J.-P. Corso

Seidenbinder

Ľ.

Successfully tested in CERN NA at H8 beam line (180GeV Pions)

> Both crystals manufactured and delivered by INFN-Ferrara

TCCP crystal also under development by CERN SY/STI team

25.03.2024

The TWOCRYST PoP for 2-crystal FT experiments | P. Hermes | PBC Annual Workshop 2024

TCCS

Courtesy of A. Mazzolari

TCCP

H8 Beam Test Results

K. Dewhurst

- 0.170

ing efficiency

channel

- 0.140

Anodic Bonding Crystal

First hadron channelling through anodically bonded crystal measured in TWOCRYST hadron beam test

R&D : Alternative technology to produce bent crystals

Under discussion: production of 7mrad crystal?

New technology: Potential LHC installation would require multiple validation studies

Devices: Roman Pots

Removal of two ATLAS-ALFA Roman Pot stations after high-β run 2023

ALFA detectors removed \rightarrow refurbishment ongoing

S. Jakobsen

25.03.2024

Milestones for 2024

CÈR

Milestones 2024

- 2024 will be the last year of preparation
- Crystal x-ray validation & thermal cycle checks at CERN
- Beam test with hadrons >180GeV: possibly during NA commissioning
- Finalize preparation and validation of TCCS assembly and RPs
- Complete detector design and procurement of acessories
- Construction, validation of TCCP assembly
- Installation of TWOCRYST devices in YETS24/25: challenging timeline!

MD Program

CERI

25.03.2024

MD	Program	All MDs with setup beam flag
Possil	ole in present machine	
2024	1 shift: Establish optimized energy ramp in steps to 1 TeV and 3 TeV	Preparation
Propo	1 shift [Optional]: Identify secondary halo channelling (IR3 TCP & IR7 crystal)	ΡοΙ
Πορο	2 shifts: Commissioning dataster ⁰ TCCD synatel sheresterization at 450Cs	
	2 Shifts: Commissioning detector & ICCP crystal characterization at 450GeV	Preparation
2025	1 shift: Measurements of double-channelling without/with target	OP
	1 shift: Identify secondary halo channelling with IR7 TCP / IR3 TCCS	РоТ
	1 shift [Optional]: Full operational configuration test	РоТ

CÈRN

All MDs with

Collaboration

CERN

Collaboration

CERN with 7 involved teams

INFN, Italy

IJCLab, France

IFIC, University of Valencia-CSIC, Spain

University of Malta, Malta

Warsaw University of Technology, Poland

MoUs signed - Contributions defined at the TWICB (Addenda need to be finished)

One institute expressed interest in joining TWOCRYST

University of Chinese Academy of Sciences (J. Fu)

Acknowledgments for financial support

European Research Council Established by the European Commission

_

Conclusions

Conclusions

- TWOCRYST project : a proof-of-principle for a double-crystal based FT experiment in the LHC
- Project is well on track but on a very challenging timeline
- Thanks a lot to all contributors!

