

# Current Status of the PBC-SBN Beamline PBC Annual Workshop

by Marc Andre Jebramcik (BE-EA-LE) and N. Charitonidis, M. Perrin-Terrin, F. Terranova 26.03.2024



## **NuTag Studies @ PBC**

- A first study of a **long-baseline experiment** was previously supported by PBC. The study was fully site independent.
- The study has concluded; a paper that presents the beamline design has been submitted to **EPJ C** https://arxiv.org/abs/2401.17068
- The physics case of a tagged neutrino experiment is wide: neutrino cross-section measurement, neutrino oscillation etc.
- The design features a double polarity setup; with the beamline having a length of  $\sim 63$  m
- Two spectrometers required for the tagging process
- The study is not further being pursued within PBC



### NuTag: proof-of-concept study for a long-baseline neutrino beam

- A. Baratto-Roldán<sup>1a</sup>, M. Perrin-Terrin<sup>2</sup>, E.G. Parozzi<sup>1</sup>, M.A. Jebramcik<sup>1</sup>, and N. Charitonidis<sup>1</sup>
- <sup>1</sup> CERN, BE Department, Esplanade des Particules 1, Meyrin, 1211 Geneva 23, Switzerland
- <sup>2</sup> Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France



## **ENUBET Studies** @ **PBC**

- A **short-baseline design** focusing mostly on kaons has been developed by the ENUBET Collaboration (see F. Terranova's talk)
- Mainly aimed at measuring the neutrino cross section
- The physics case mostly targets the  $v_e$  cross section  $\rightarrow$  Transmission of K<sup>+</sup> $\rightarrow \pi^0$ +e<sup>+</sup>+ $v_e$  should be maximized
- The initial ENUBET beamline (*baseline* design) is not tunable to intermediate beam/neutrino energies
- An improved design (REF design) that was developed by E. Parozzi solves this issue (operates at p=4, 6 & 8.5 GeV/c) and increases the acceptance & transmission of the ENUBET beamline significantly

| Name               | baseline            | REF                  |
|--------------------|---------------------|----------------------|
| $K^+/\mathrm{PoT}$ | $3.6 	imes 10^{-4}$ | $7.0 \times 10^{-4}$ |
| $\pi^+/{\rm PoT}$  | $4.0 	imes 10^{-3}$ | $1.1 \times 10^{-2}$ |

K<sup>+</sup> and Pion yield at p=8.5 GeV/c within p/p\_0 $\in$ [-10%;10%] with a 400 GeV/c proton beam on target



# **ENUBET Studies** @ **PBC**

- A **short-baseline design** focusing mostly on kaons has been developed by the ENUBET Collaboration (see F. Terranova's talk)
- Mainly aimed at measuring the neutrino cross section
- The physics case mostly targets the  $v_e$  cross section  $\rightarrow$  Transmission of K<sup>+</sup> $\rightarrow \pi^0$ +e<sup>+</sup>+ $v_e$  should be maximized
- The initial ENUBET beamline (*baseline* design) is not tunable to intermediate beam/neutrino energies
- An improved design (REF design) that was developed by E. Parozzi solves this issue (operates at p=4, 6 & 8.5 GeV/c) and increases the acceptance & transmission of the ENUBET beamline significantly

| Name               | baseline             | REF                  |
|--------------------|----------------------|----------------------|
| $K^+/\mathrm{PoT}$ | $3.6 \times 10^{-4}$ | $7.0 	imes 10^{-4}$  |
| $\pi^+/{\rm PoT}$  | $4.0 \times 10^{-3}$ | $1.1 \times 10^{-2}$ |

K<sup>+</sup> and Pion yield at p=8.5 GeV/c within p/p<sub>0</sub> $\in$ [-10%;10%] with a 400 GeV/c proton beam on target

#### The PBC-SBN, i.e., NuTag embedded into the ENUBET REF design



#### PBC-SBN

- Since last year, NuTag and ENUBET are joining forces → PBC-SBN is supported within PBC (Conventional Beams Working Group)
- ENUBET's REF design is the ideal starting point to attempt the merger of both experiments' requirements
- Main modification: 4D pixel trackers have to be introduced to achieve the tagging

# **Two-Stage Optimization of the REF design**

- The beamline needs optimization in any case **independently of any location** → Determines the number of required PoTs to reach the physics goal
- Not using preexisting North Area magnets any more → Quadrupole design has to be checked in terms of feasibility



red=quadrupoles blue=dipoles gray=decay tunnel

- The optimization process of the beamline is rather extensive
  - Target (16 targets analyzed), 7 drift spaces,
    18 quadrupole parameters (6 magnets with different length, aperture, gradient)
    - → <u>26 free parameters</u>
  - Multiple objectives: K<sup>+</sup> & π<sup>+</sup> transmission as possible and the beam size has to be as small as possible in the momentum selection and the decay tunnel
    → 3 objectives
- **1**<sup>st</sup> **stage:** Linear optimization of the acceptance with a multi-objective genetic algorithm (MOGA)
  - MOGA is a *state-of-the-art* tool that is used, e.g., in the development of lattices for light sources
- **2**<sup>nd</sup> **Stage:** Verification of the optimization process of a start-to-end BDSIM simulation

## **Multi-Objective Genetic Algorithm Results**



- The optimization was performed with the MOGA algorithms within PYMOO in combination with MADX
- With a few simplifying assumptions, the optimizer has sufficient performance to run on a single CPU (returns acceptable results within few hours)
- MOGA returns a set of optimal (dominant) solutions with the dimension depending on the number of objectives
- The waist size within the momentum selection competes with the transmission efficiency of the beamline
- The beam size at the end of the decay tunnel is not strongly competing with the transmission efficiency of the beamline

# **An Example Solution**

Noteworthy changes as a consequence of the optimization process:

- The optimized beamline is ~7 m shorter
- Quadrupoles got shorter and aperturegradient relation is optimized
- Beam remains much smaller throughout the decay tunnel (cannot exceed muon tracker station's acceptance)
- Beam is smaller within the momentum selection
- Graphite target changes from L=0.7 m, r=3 cm to a CNGS-like target (L=1.3 m, r=3 mm)
- Acceptance significantly improved
  (→ next slide)



coordinate (m)

horiz.

(E

coordinate

vert.

## **Acceptance Overlap**

- The overlap of the acceptance with the target histogram is much improved after the optimization process
- CNGS target provides a narrower distribution in phase space that can easier be enclosed by the vertical acceptance
- The optimizer accomplishes a stark y-y' correlation of • the vertical acceptance that mimics the correlation of the particles coming out of the CNGS-like target
- The vertical acceptance is smaller than the horizontal • acceptance due to the vertical gap width in the dipoles of the momentum selection



## **Performance after MOGA Optimization**

- Have created a BDSIM model of the beamline that in the 2<sup>nd</sup> stage of the optimization process confirms the transmission
- The transmission improves in the  $p/p_0 \in [-10\%; 10\%]$  range significantly

| Name                 | baseline             | REF                  | optimized REF V12                |
|----------------------|----------------------|----------------------|----------------------------------|
| $K^+/{\rm PoT}$      | $3.6 \times 10^{-4}$ | $7.0 \times 10^{-4}$ | $14.1 \times 10^{-4} \ (+102\%)$ |
| $\pi^+/\mathrm{PoT}$ | $4.0 \times 10^{-3}$ | $1.1 \times 10^{-2}$ | $2.15 \times 10^{-2} (+101\%)$   |



- Since NuTag's technique requires the measurement of the particle momentum on a particle-by-particle basis, there is a pile-up limit that is easily breached by positrons coming out of the target
- With pixel monitors located at the 2<sup>nd</sup> bend in the beamline, the flux exceeds >400 MHz/mm<sup>2</sup>



# **Reducing the Positron Flux**

- In order to absorb/filter on-momentum positrons, a 1.2 cm thick Pb plate ( $\sim$ 2 radiation lengths) was inserted into the beamline in the middle of the momentum selection (no primary impact, small beam waist)
- The plate causes the loss of some mesons; however, it ٠ strongly relaxes the flux on the pixel monitors

Name

 $K^+/PoT$ 

 $\pi^+/\text{PoT}$ 

0.0010 -

(1/GeV) 8000'0

0.0006

0.0004

0.0002

0

2



# **Pixel Position Monitors (NuTag)**

- It requires at least 3 position monitors to achieve a momentum reconstruction
- The maximum flux on the pixel position monitors is 100 MHz/mm<sup>2</sup> assuming a future technology (developed by TimeSPOT/IGNITE/PicoPix)
- Assuming 5E12 PoT/4.8s within a spill, the momentum reconstruction on a particle-by-particle basis becomes possible
- 4<sup>th</sup> monitor could be added upstream of the first monitor to introduce redundancy





#### Tuesday, March 26, 2024

### **Proton Demand of the PBC-SBN: The SPS as an <b>Example**

- We want to address the question of how demanding the PBC-SBN is in terms of PoT: We take the SPS as an example
- The overall PoT target with both ProtoDUNEs reduces from 5.0E19 PoT (baseline) to 1.4E19 PoT (-62% reduction)
- The PBC ECN3 Beam Delivery Task Force has performed the analysis of PoT for year for TCC2 while featuring dedicated cycles for SHiP (ECN3)



### What is next?

- Optimized beamline has to be analyzed with the ENUBET simulation code
- The BDSIM model has to be completed
  - Energy-deposition study with successive adjustment of the shielding
  - Design and placement of a beam dump for the primary beam
- Optimization on the momentumselection section
  - Adjustment of Pb plate's location, material, thickness & optics within momentum selection
  - Possible elongation of drifts to improve cleaning efficiency of plate
- Study whether current monitor setup is suitable for the tagging

Study of potential sites for such an experiment inside and outside CERN (within this year)

- Examples are: SPS, PS, Fermilab's Main Injector,
- Study of a potential timeline/milestones of such an experiment
- Study of the infrastructure related aspects; e.g., radiation protection etc.
- Budgeting (initial costing)

## Conclusion

• The MOGA optimization of the ENUBET REF design as the starting point of the SBN was *highly* successful (yield gains in the 80% up to 100% range)

| Name               | baseline             | REF                 | optimized REF V12                | optimized REF V12 (plate)        |
|--------------------|----------------------|---------------------|----------------------------------|----------------------------------|
| $K^+/\mathrm{PoT}$ | $3.6 \times 10^{-4}$ | $7.0 	imes 10^{-4}$ | $14.1 \times 10^{-4} \ (+102\%)$ | $12.7 \times 10^{-4} \ (+81\%)$  |
| $\pi^+/\text{PoT}$ | $4.0 \times 10^{-3}$ | $1.1 	imes 10^{-2}$ | $2.15 \times 10^{-2} \ (+101\%)$ | $1.92 \times 10^{-2} \; (+80\%)$ |

- The optimized beamline decreases the PoT that are required to achieve the ENUBET physics case from 5E19 PoT down to 1.4E19 PoT (assuming an inserted Pb plate as a positron countermeasure)
- Further optimization of the meson yield gets increasingly difficult to achieve; improvements not targeting the transmission still possible
- Taking the SPS as <u>an example</u>: With a yearly consumption that is less than ≤¼ of the TCC2 PoT/year, the ENUBET physics case can be achieved within reasonable time (improvements possible)
- As mentioned on the previous slide: The list of pending items is long and there is still some way to go



### Thanks for your attention! Questions?

## **Multi-Objective Genetic Algorithm Results**



- The optimization was performed with the SMS-EMOA and AGE-MOEA MOGA algorithms (similar to the classic NSGA-II algorithm) within PYMOO in combination with CPYMAD
- With a few simplifying assumptions, the optimizer has sufficient performance to run on a single CPU (returns acceptable results within few hours)
- MOGA returns a set of optimal (dominant) solutions with the dimension depending on the number of objectives
- The waist size within the momentum selection competes with the transmission efficiency of the beamline
- The beam size at the end of the decay tunnel is not strongly competing with the transmission efficiency of the beamline

### Targets

| Name                | Geometry              | Length $L(\mathbf{m})$ | Radius $r_{\rm (mm)}$ | Density $o(g/cm^2)$ | $K^+$ yield $f_K (10^{-2} \text{POT}/\text{GeV})$ | $\pi^+$ yield $f$ (10 <sup>-1</sup> POT/GeV) |  |
|---------------------|-----------------------|------------------------|-----------------------|---------------------|---------------------------------------------------|----------------------------------------------|--|
| ENUBET A            | cylinder              | 0.70                   | 30                    | 2.3                 | 2.0                                               | 1.3                                          |  |
| ENUBET B (thin)     | cylinder              | 0.70                   | 10                    | 2.3                 | 2.4                                               | 1.7                                          |  |
| CNGS A (correct)    | mulitple cylinders [] | 1.30*                  | 2/3                   | 1.8                 | 2.1                                               | 1.8                                          |  |
| CNGS B (collapsed)  | cylinder              | 0.70                   | 2.5                   | 1.7                 | 2.6                                               | 2.0                                          |  |
| CNGS C (thin)       | cylinder              | 1.30                   | 2                     | 1.7                 | 2.4                                               | 2.0                                          |  |
| CNGS D (thick)*     | cylinder              | 1.30                   | 3                     | 1.7                 | 2.7                                               | 2.1                                          |  |
| CNGS E (long)       | cylinder              | 1.40                   | 2.5                   | 1.7                 | 2.7                                               | 2.1                                          |  |
| CNGS F (short)      | cylinder              | 1.20                   | 2.5                   | 1.7                 | 2.5                                               | 2.0                                          |  |
| CNGS G (very thick) | cylinder              | 1.30                   | 13                    | 1.7                 | 2.9                                               | 1.9                                          |  |
| NuMI                | cylinder              | 0.94                   | 3.7                   | 1.7                 | 2.3                                               | 1.7                                          |  |
| T2K                 | cylinder              | 0.91                   | 13                    | 1.7                 | 2.3                                               | 1.5                                          |  |
| CNGS H              | cylinder              | 1.30                   | 3.5(+0.5)             | 1.7                 | 2.8                                               | 2.1                                          |  |
| CNGS I*             | cylinder              | 1.30                   | 3                     | 1.8(+0.1)           | 2.8                                               | 2.1                                          |  |
| CNGS J*             | cylinder              | 1.30                   | 3                     | 2.0(+0.2)           | 3.0                                               | 2.3                                          |  |
| CNGS K <sup>*</sup> | cylinder              | 1.30                   | 3                     | 2.2(+0.2)           |                                                   | Not considered up to V12.                    |  |
| CNGS L*             | cylinder              | 1.30                   | 3                     | 2.4(+0.2)           | Not consider                                      |                                              |  |
| CNGS M <sup>*</sup> | cylinder              | 1.35(-0.05)            | 3                     | 2.4                 |                                                   |                                              |  |

### **Slicing of the Phase Space**



CNGS target: Histogram mostly block diagonal

$$\frac{\text{cov}(\mathbf{A},\mathbf{B})}{\sigma_A \sigma_B} = \frac{\begin{vmatrix} x & p_x & y & p_y & p_z \\ \mathbf{1.0} & \mathbf{0.9} & 1.0 \times 10^{-3} & 1.3 \times 10^{-3} & -6.8 \times 10^{-4} \\ \mathbf{1.0} & 1.4 \times 10^{-3} & 1.6 \times 10^{-3} & -1.6 \times 10^{-3} \\ \mathbf{1.0} & \mathbf{0.9} & 3.2 \times 10^{-3} \\ \mathbf{1.0} & 4.1 \times 10^{-3} \\ \mathbf{1.0} & 1.0 \end{vmatrix}$$



#### Transmission at different momentum offsets



Target's momentum dependence



### The overlap of the acceptance with the target histogram



## Monitor Flux with 2E13 PoTs/4.8s no Pb plate



- The flux on the first monitor exceeds 700 MHz/cm<sup>2</sup> with 2E13 PoTs/spill
- The issue is the high positron flux.
- In order to make the monitors work, there has to be some foil or the whole design has to be changed (adding a 2<sup>nd</sup> achromat/more dipoles)
- The foils requires the following:
  - Located in at double waist
  - Behind R1 to avoid acting as a 2<sup>nd</sup> target for the primary

# **Physics List Comparison**

- The results are based on the FTFP\_BERT physics list (Fritiof Precompound Model with Bertini Cascade Model. The FTF model is based on the FRITIOF description of string excitation and fragmentation. This is provided by G4HadronPhysicsFTFP\_BERT. )
- The QGSP\_BERT physics list results in in overall decrease of the yield in the 25% range (Quark-Gluon String Precompound Model with Bertini Cascade model. This is based on the G4HadronPhysicsQGSP\_BERT class and includes hadronic elastic and inelastic processes. Suitable for high energy (>10 GeV).)



### Optimization to have largest possible beam size at 1<sup>st</sup> monitor



