EHzürich

NA64 programme post LS3 - PBC Workshop - CERN 26.03.2024

Paolo Crivelli, ETH Zurich, Institute for Particle Physics and Astrophysics on behalf of NA64 collaboration

NA64 research program - input to EPPS 2018-2020

Process	New Physics	Comments, Projections for limits
e^- beam		Required number of EOT: 5×10^{12}
$A' \to e^+e^-$, and	Dark photon	$10^{-5} < \epsilon < 10^{-2}, \ 1 \lesssim m_{A'} \lesssim 100 \text{ MeV}$
$A' \rightarrow invisible$		$2 \times 10^{-6} < \epsilon < 10^{-3}, \ 10^{-3} \lesssim m_{A'} \lesssim 1 \text{ GeV}$
$A' \to \chi \overline{\chi}$	sub-GeV Dark Matter (χ)	Scalar, Majorana, pseudo-Dirac DM
		$\alpha_D^{S,M} \lesssim 1, \alpha_D^{p-D} \lesssim 0.1, \text{for} m_\chi \lesssim 100 \text{MeV}$
$X \to e^+ e^-$	new gauge X - boson	⁸ Be* anomaly, $\epsilon_e^{up} < 10^{-5}$; $\epsilon_e^{low} > 2 \times 10^{-3}$
milliQ particles	Dark Sector, charge quantisation	$10^{-4} < mQ < 0.1 \text{ e}, \ 10^{-3} < m_{mQ} < 1 \text{ GeV}$
$a \rightarrow \gamma \gamma, invisible$	Axion-like particles	$g_{a\gamma\gamma}^{inv} \lesssim 2 \times 10^{-5}, m_a \lesssim 200 \mathrm{MeV}$
μ^- beam		Required number of MOT: $10^{11} - 5 \times 10^{13}$
$Z_{\mu} \rightarrow \nu \nu$	gauge Z_{μ} -boson of $L_{\mu} - L_{\tau}, < 2m_{\mu}$	$(g-2)_{\mu}$ anomaly; $g_{\mu}^V \lesssim 10^{-4}$, with $\lesssim 10^{11}$ MOT
$Z_{\mu} \to \chi \overline{\chi}$	$L_{\mu} - L_{\tau}$ charged Dark Matter (χ)	$y \lesssim 10^{-12}$ for $m_\chi \lesssim 300$ MeV with $\simeq 10^{12}$ MOT
milliQ	Dark Sector, charge quantisation	$10^{-4} < mQ < 0.1 \text{ e}, 10^{-3} < m_{mQ} < 2.5 \text{ GeV}$
$a_{\mu} \rightarrow invisible$	non-universal ALP coupling	$g_Y \lesssim 10^{-2}, \ m_{a_\mu} \lesssim 1 \ \text{GeV}$
$\mu - \tau$ conversion	Lepton Flavour Violation	$\sigma(\mu - \tau) / \sigma(\mu \to all) \lesssim 10^{-11}$
π^-, K^- beams	Current limits, PDG'2018	Required number of POT(KOT): $5 \times 10^{12} (5 \times 10^{11})$
$\pi^0 \rightarrow invisible$	$Br(\pi^0 \to invisible) < 2.7 \times 10^{-7}$	$Br(\pi^0 \to invisible) \lesssim 10^{-9}$
$\eta \rightarrow invisible$	$Br(\eta \to invisible) < 1.0 \times 10^{-4}$	$Br(\eta \to invisible) \lesssim 10^{-8}$
$\eta' \rightarrow invisible$	$Br(\eta' \to invisible) < 5 \times 10^{-4}$	$Br(\eta ightarrow invisible) \lesssim 10^{-7}$
$K^0_S \rightarrow invisible$	no limits	$Br(K_S^0 \to invisible) \lesssim 10^{-9}$
$K_L^0 \rightarrow invisible$	no limits	$Br(K_L^0 \to invisible) \lesssim 10^{-7}$
		complementary to $K^- \to \pi \nu \nu$

https://indico.cern.ch/event/765096/contributions/

NA64 TARGET: THE VECTOR PORTAL & Light Dark Matter (LDM)

In this framework DM can be produced thermally in the early Universe

OBSERVED AMOUNT OF DARK MATTER TODAY

$$\Omega_X \propto rac{1}{< v\sigma >} \sim rac{m_X^2}{y}$$
 where $y = \epsilon^2 lpha_D \left(rac{m_X}{m_{A'}}
ight)^4$

J. Feng and J. Kumar Phys.Rev.Lett.101:231301,2008

4

Complementarity of direct detection and accelerators experiments

R. Essig, J. Mardon, and T. Volansky, PRD85, 076007 (2012), 1108.5383.

÷

NA64 potential: additional new physics scenarios

 $e^{-}Z \rightarrow e^{-}ZX; X \rightarrow invisible$ A' -> visible and X17 B-L Z'vs neutrino scattering 10^{-2} New Physics in (g-2)_e vs (g-2)_e from measurement of alpha 10 -3 HADES Thermal iDM, $\Delta = 0.1 m_{\chi_1}, m_A = 3 m_{\chi_1}, \alpha_D = 0.1$ g-2 Berkeley (2018) PHENEX -12 10^{-} 10 10 CHARMII Thermal iDM 10^{-3} NA48 10^{-} BaBa g-2 LKB(2020) NPCGe 10^{-8} $(m_{A})^{4}$ -13 10 LSND **NA64** ក្ន<mark>ម</mark>្ភ 10 10^{-9} l∆a_xl 10-10 Csl α_{D} -14 10^{-11} E137 scatter N64e 10 Borexino -6 **NA64** 10 10⁻⁴ PRL 120, 231802 (2018), $\sim 10^{-12}$ PRI/129, 161801 (2022) 10^{-13} PRD 107, 071101 (R) 2020 Gemma -15 10 PRL 126, 211802 (2021) 10^{-14} 10 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10 ⁻² 10 10 10 10 10 10 $m_{A'}, GeV$ Eur. Phys. J. C (2021) 81: 959 m_x, GeV m_{z'}, GeV Eur. Phys. J. C (2023) 83: 391 QCD axion and ALPs Lmu-Ltau Z' models $L_{\mu} - L_{\tau}$ "vanilla" model $L_{\mu} - L_{\tau}$ "invisible" model, $m_{Z'} = 3m_{\chi}$ 10^{-1} 107 **Results obtained with** 10^{-2} E LEP 10^{-2} 10^{-2} 3x10¹¹ EOT GeV^{-1} 10^{-} NA64 (2016-2018 statistics) $\overset{\sim}{8}$ 10⁻ CCF ${}^{2}S_{0} 10^{-3}$ Analysis in progress of $_{6}^{5} 10^{-}$ NuCal 5x more data on "tape" PRL 125, 081801 (2020) $NA64 - \mu 10^{11} MOT$ $NA64 - \mu 10^{11} MOT$ 10^{-5} E137 PRD 106, 032015 (2022) CHARM 10^{-} 10^{-2} 10^{-1} Paolo Crivelli | 26.03.2024 | 5 m_a, GeV $m_{Z'}$ [MeV] $m_{Z'}$ [MeV]

 $/m_A)^4$

x

Post LS3 prospects for LDM searches at NA64

Planned upgrades include:

i) Increase the e- beam intensity up to $>\sim 10^7$ e-/spill

- new readout electronics: 80-> 250 MHz digitisers, trackers APV ->VMM

- DAQ speed up to 30-40 kevent/ spill

ii) Improve detector hermeticity and performance
ECAL: radiation hard central part, improve stability,...
HCAL:, larger acceptance modules, longitudinal segmentation
VHCAL: to reject high Pt hadronic secondaries, 2023 prototype
test was successful

New LYSO based SRD: higher granularity, lower SR threshold

To improve our sensitivity in the (high) mass range and on scenarios with $alpha_D=0.5 \rightarrow use positron and muon beams$

CERN-SPSC-2024-003 ; SPSC-P-348-ADD-4

Resonance annihilation channel with 100 GeV e+beam.

L. Marsicano *et al.* Phys. Rev. Lett. 121, 041802 (2018), NA64 collaboration, *Phys.Rev.D* 109 (2024) 3, L031103

Some additional post LS3 prospects at NA64e

FIPs 2022 workshop: arXiv 2305.01715

Gninenko et al., PHYS. REV. D 100, 035003 (2019)

Some very nice examples of complementarity with FASER and SHiP and other experimental efforts!

E *H zürich*

Goals

NA64u 2022 Monte Carlo

NA64mi

NA64µ: Searching for Lmu-Ltau Z' and A' with muon beams

Signature and challenge Missing energy + missing momentum

 $NA64\mu(2 \cdot 10^{13})$

 Δa_{μ} favoured

 10^{0}

Post LS3 prospects for NA64µ

During LS3: setup upgrade to run up to 5x10⁷ muons/spill

 $GOAL > 2 \times 10^{13} EOT$

Planned upgrades include:

ECAL (readout) HCAL (larger acceptance modules) VHCAL (optimisation of prototype, 2 modules) Second spectrometer with double magnet Segmented trigger (hodoscope) DAQ & readout

 $\mathrm{NA64}\mu(3\cdot10^{11})$ NA64 μ (2 · 10¹³),

 10^{-1}

NA64h: Search for dark sector coupled to quarks with hadronic beams

And the second descent descent

First test run at H4 in 2022

Striking signature η , $\eta' K_{0S,L..} \rightarrow$ invisible:

- incoming pion of $\sim 50 \text{ GeV}$

- complete disappearance of beam energy in the HCAL target

Process highly suppressed in SM

$$\Gamma(M^0 \to \nu \overline{\nu}) \sim \left(\frac{m_\nu}{m_{M^0}}\right)^2 \lesssim 10^{-16}$$

Current limit: Br(η -> inv) < ~ 10⁻⁵-10⁻⁴ (BaBar/BESIII)

First proof-of-concept results to be submitted soon.

BESIII limits improved by ~ 3 during a one-day run (BESIII collected data for a few months)

Summary and Outlook

NA64e-	 Tot. collected statistics ~1.5 x 10¹² EOT -> probing LDM benchmark model and improve sensitivity ALPs, L_μ-L_τ, and B-L Z', iDM, Plan: 2x statistics before and total of ~1. x 10¹³ EOT after LS3 	
ΝΑ64 μ	 2022: 2x10¹⁰ MOT, 2023: 1.5x10¹¹ MOT(upgraded setup)->(g-2)_μ and L_μ-L_τ Z' Plan: 2x statistics before and tot. ~2. x 10¹³ EOT after LS3 -> LDM 	
NA64e+	 Pilot run 2022 (2 days) ~1x10¹⁰ E+OT, 2023 run at 70 GeV (1 day) Plan: 40, 60 GeV ~2. x 10¹¹ E+OT after LS3 -> LDM 	
NA64h	 2022 ~2x10⁹ pions (1 day) -> proof of principle (DS coupled to quarks) p+ A -> E_{miss} (S,P,Z', HNL,) + X , technique à la NA64e under study 	

The exploration of the NA64 physics potential has just begun. Proposed searches with leptonic and hadronic beams: unique sensitivities highly complementary to similar projects.

Acknowledgments

NA64 collaboration and in particular S: Gninenko and L. Molina-Bueno

ETH*zürich* Special thanks to: E. Depero, H. Sieber, B. Banto-Oberhauser, M. Mongillo, A. Ponten

Beam department: D. Banerjee, J. Bernhard, N. Charitonidis, L. Gattignon, M. Brugger

My work is supported by ETH Zurich and SNSF Grant No. 169133 and 186158 (Switzerland)

