

-

1

E III

AMBER beyond LS3: QCD physics beyond colliders

Bjoern Seitz University of Glasgow

For the AMBER Collaboration Presented at Physics Beyond Colliders Annual Workshop CERN, 26 March 2024

Contact: bjorn.seitz@cern.ch

Physics beyond Colliders - Emergent Phenomena

- Use M2 beam in the CERN/SPS North Area
- Versatile beams (muons and hadrons of both charges)
- Beam momenta ranging from 50 280 GeV/c
- Improved beam properties post LS3 (NA-CONS)
- Intensity limited by radiation protection
- New Detector components for physics post LS3

	Beam	Target	Additional Hardware	
Proton radius measurement	100 GeV muons	high pressure Hydrogen	active target TPC, tracking stations (SciFi, Silicon)	1 ved)
Antiproton production cross section	50 GeV - 280 GeV protons	LH ₂ , LHe	Liquid He target	hase approv
Drell-Yan measurements with pions	190 GeV charged pions	Carbon, Tungsten		С <u>"</u>
Drell-Yan measurements with Kaons	~100 GeV charged Kaons	Carbon, Tungsten	vertex detectors, 'active absorber'	ation)
Prompt photon measurements	> 100 GeV charged Kaon/pion beams	LH ₂ , Nickel	hodoscopes	se 2 repar
K-induced spectroscopy	50 GeV - 100 GeV charged Kaons	LH ₂	recoil ToF, forward PID	Pha (in p

1				
h_A q x \bar{T}		Target	Additional Hardware	
	γ*/	high pressure Hydrogen	active target TPC, tracking stations (SciFi, Silicon)	1 ved)
sei		LH ₂ , LHe	Liquid He target	hase approv
Dre <i>l'an</i> mea urements with pion s	190 GeV charged pions	Carbon, Tungsten		₽
Drell-Yan measurements with Kaons	~100 GeV charged Kaons	Carbon, Tungsten	vertex detectors, 'active absorber'	ation)
Prompt photon measurements	> 100 GeV charged Kaon/pion beams	LH ₂ , Nickel	hodoscopes	se 2 repar
K-induced spectroscopy	50 GeV - 100 GeV charged Kaons	LH ₂	recoil ToF, forward PID	Pha (in p

$\frac{h_{A}}{h_{B}} \xrightarrow{q} x$	γ* 190 GeV charg pions	Tai hig hy LH Carbon, Tungsten	d d d d d d d d d d d d d d d d d d d	Phase 1 (approved)
Drell-Yan measurements with Kaons	~100 Charged Kar is	Carbon, Tungsten	vertex detectors, 'active absorber'	ation)
Prompt photon measurements	> 100 GeV charged Kaon/pion beams	LH ₂ , Nickel	hodoscopes	se 2 repar
K-induced spectroscopy	50 GeV - 100 GeV charged Kaons	LH ₂	recoil ToF, forward PID	Pha (in p

The wish: Kaon, Kaons, Kaons

p _{beam} = 160 GeV/c	0.3611	0.0175	0.6214	0.9650	0.0237	0.0113
p _{beam} = 190 GeV/c	0.2402	0.0142	0.7456	0.9680	0.0241	0.0079

Beam particle identification: CEDARs

Differential Cherenkov counter provides π,K,p separation Differences in Cherenkov angle are small

→ Need parallel beam and excellent tracking

Beam particle identification: CEDARs

Request for vacuum improvements as studied by BE-EA, as well as CEDAR refurbishments including improvements in precision and stability of the diaphragm and motor controls.

From π^{\pm} to K[±] - Drell Yan process

Inclusive di-lepton measurement

Detector Improvements

Meson spectroscopy

Where are they?

How to identify them?

- Spin-exotic: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, \dots$
- Supernumerary states
- Flavor-exotic: $\left|Q\right|,\left|I_{3}\right|,\left|S\right|,\left|C\right|\geq2$
- Comparison with models, lattice

Need:

- Large data sets with small statistical uncertainties
- Complementary experiments
 - production mechanisms
 - final states
- Advanced analysis methods
 - reaction models
 - theoretical constraints

Kaonic mass spectrum

And there is more

	Beam	Target		Additional	
				1,	
Drell-Yan measurements with Kaons	~100 GeV charged Kaons	Ca			
Prompt photon measurements	> 100 GeV charged Kaon/pion beams	Lŀ			
K-induced spectroscopy	50 GeV - 100 charged	LH ₂		recoil ToF, forward PID	
Primakoff reactions	~ 100 GeV charged Kaons	Nickel		π/Κ	
Meson radii	50 GeV to 280 GeV charged pions and Kaons			e	

Prompt Photons and Primakoff Effect

Initial idea of Henry Primakoff: Electromagnetic field of nucleus = photon target!

Also applicable to compton scattering:

graphics from A. Maltsev, EHM Workshop 2021

Kaon polarisabilites at AMBER

Ē

B

pictures from Temple Univ

"stretchability"

External field deforms the charge distribution

"alignability" $\vec{d}_{M \text{ induced}} \sim \beta \vec{B}$ $\beta_{para} > 0$ $\beta_{diam} < 0$

Paramagnetic: proton spin aligns with the external magnetic field

Diamagnetic: π -cloud induction produces field counter to the external one

Kaon polarisabilites at AMBER

- Unique measurement
- Prediction α_{K} - β_{K} ~1-4x10-4fm³

14

INSIDE THE NEANDERTHAL BRAIN First hints of how their minds differed from ours **Instance of the united united united to the average of the averag**

8 July 2010 www.nature.com/nature £10

THE INTERNATIONAL WEEKLY JOURNAL OF S

OIL SPILLS There's more to come

PLAGIARISM It's worse than you think

CHIMPANZEES The battle for survival

SHRINKIN **HEPROTO**

111 Y8 Y8 0

New value from exotic a trims radius by four per

NATURE hers for hire

The humble proton is

£3.70 US/CAN\$5.95 No2926

WEDREY 20 July 2013

It works differently if you're small

fro

Hadron charge radii

Hadron charge radii

e

meson

electron

 $\langle r_E^2 \rangle = -6\hbar^2 \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}O^2}$

Unique upper unity in same setup and antiparticle radii in same setup

Summary and Conclusion

Contact: Biorn.Seitz@cerr

- Understanding QCD means understanding the emergent properties of Baryons and Mesons
- Unique opportunities to study QCD provided by CERN M2 beam line with high energy and high intensity π/K/p beam
- Exciting improvements in beam delivery (NA-CONS)
- AMBER beyond LS3 focussing on
 - Drell-Yan with Kaons and Kaon structure
 - Kaon induced meson spectroscopy
 - Meson polarisabilities using Primakoff reactions
 - Meson radii in inverse kinematics

N Physics Beyond Colliders

A big Thank You to PBC and CERN-BE for their continued support