

# Fundamental physics with radioactive atoms and molecules at CERN-ISOLDE

Mia Au and Michail Athanasakis-Kaklamanakis

# Low energy observables for BSM physics

# • Sensitive to el

Sensitive to electron-coupled CPV

### Nuclear MQM

- Sensitive to nuclear CPV
- Enhanced in heavy nuclei
- Enhanced in quadrupole-deformed nuclei

### **Nuclear Schiff moment**

- Sensitive to nuclear CPV
- Enhanced in heavy nuclei

SY

Accelerator Systems

• Enhanced in octupole-deformed nuclei

26.03.24





[3] Opportunities for Fundamental Physics Research with Radioactive Molecules, arXiV 2302.02165 (2023), Rep. Prog. Phys. (2024) doi: 10.1088/1361-6633/ad1e39

# Low energy observables for BSM physics

# Sensitive to electron-coupled CPV

**eEDM** 

### **Nuclear MQM**

- Sensitive to nuclear CPV
- Enhanced in heavy nuclei
- Enhanced in quadrupole-deformed nuclei

### **Nuclear Schiff moment**

- Sensitive to nuclear CPV
- Enhanced in heavy nuclei

SY

Accelerator Systems

• Enhanced in octupole-deformed nuclei

26.03.24

[1] Contribution to Snowmass 2021: *EDMs and the search for new physics,* arXiV 2203.08103 (2022)
[2] Safronova et al. (2018) *Rev. Mod. Phys.* 90. 2



[3] Opportunities for Fundamental Physics Research with Radioactive Molecules, arXiV 2302.02165 (2023), Rep. Prog. Phys. (2024) doi: 10.1088/1361-6633/ad1e39

# **EDM searches**

The existence of a finite permanent EDM of a particle or atom would violate time reversal (T) and parity (P) symmetry, or equivalently charge conjugation and parity symmetry (CP), needed to solve baryon asymmetry

#### **nEDM** $|\boldsymbol{d}_n|$

- 2006 ILL UCNs:  $|d_n| < 2.9 \times 10^{-26} \text{ e cm}$
- 2020 PSI [1]:  $|d_n| < 1.8 \times 10^{-26}$  e cm

#### eEDM $|d_e|$

- 2011 Imperial <sup>174</sup>Yb<sup>19</sup>F [2]:  $|d_e| < 2 \times 10^{-28} e \text{ cm}$
- 2018, 2013 ACME <sup>232</sup>Th<sup>16</sup>O [3,4]:  $|d_e| < 1 \times 10^{-29} e cm$
- 2023, 2017 JILA  $^{\rm 180}{\rm Hf^{19}F^{+}}$  [5]:  $|d_{e}| < 4.1 \times 10^{-30}~e~{\rm cm}$

#### **Atomic EDM**

- 2009, <sup>199</sup>Hg:  $|d| < 3.1 \times 10^{-29}$  e cm
- 2015, <sup>225</sup>Ra [6]: |*d*| < 5×10<sup>−22</sup> e cm
- 2020, <sup>171</sup>Yb [7]:  $|d| < 1.5 \times 10^{-26}$  e cm

PRL 124, 081803 (2020)
 Nature 473, 493 (2011)
 Science 343, 269 (2014)
 Nature 562, 355 (2018)

[5] Science 381, 46 (2023) [6] PRC 94, 025501 (2016) [7] PRL 129, 083001 (2020)

26.03.24



https://cfp.physics.northwestern.edu/gabrielse-group/acme-electron-edm.html





# **EDM** searches

The existence of a finite permanent EDM of a particle or atom would violate time reversal (T) and parity (P) symmetry, or equivalently charge conjugation and parity symmetry (CP), needed to solve baryon asymmetry

#### **nEDM** $|d_n|$

- 2006 ILL UCNs:  $|d_n| < 2.9 \times 10^{-26} \text{ e cm}$
- 2020 PSI [1]:  $|d_n| < 1.8 \times 10^{-26} e \text{ cm}$

#### $eEDM |d_e|$

- 2011 Imperial <sup>174</sup>Yb<sup>19</sup>F [2]:  $|d_e| < 2 \times 10^{-28}$
- 2018, 2013 ACME <sup>232</sup>Th<sup>16</sup>O [3,4]:  $|d_{e}| < 1$
- 2023, 2017 JILA <sup>180</sup>Hf<sup>19</sup>F<sup>+</sup>[5]:  $|d_{\rho}| < 4.1 \times 1$

[5] Science 381, 46 (20)

[6] PRC 94, 025501 (20

26.03.24

#### **Atomic EDM**

- 2009, <sup>199</sup>Hg:  $|d| < 3.1 \times 10^{-29}$  e cm
- 2015, <sup>225</sup>Ra [6]:  $|d| < 5 \times 10^{-22}$  e cm
- 2020, <sup>171</sup>Yb [7]:  $|d| < 1.5 \times 10^{-26} e \text{ cm}$

[1] PRL 124, 081803 (2020) [2] Nature 473, 493 (2011) [3] Science 343, 269 (2014) [4] Nature 562, 355 (2018)

SY

Accelerator Systems





(STI

Accelerator Systems

### Pathway to improved limits on EDMs











Conceptualization courtesy of N. Hutzler (2024)













# **CERN-ISOLDE**

>1000 isotopes and isomers

### 74 elements

<u>www.nucleonica.com</u>, Dataset: JEFF-3.1 Nuclear Data Library, NEA (2023) Ballof et.al, (2020) NIM B **463**, 211-215 cern.ch/isolde-yields

SY

Accelerator Systems



#### 26.03.24

{STI





# 2. Production of radioactive molecules for offline experiments

### **Facilities for ISOLDE TISD**

• MEDICIS, GLM, LA1, YOL

#### **Proposal**

SY

Accelerator Systems

• Feasibility studies, efficiency characterization of isotope collection and transport

#### **Extension and collaboration**

- Ablation and measurement:
- Imperial College London, Hutzler lab (Caltech), EMA (MIT), RAFICI (University of Edinburgh)

26.03.24



[1] Au et al. (2023) *NIM B.* 541 (144-147)
[2] Wojtaczka et al. (2023) *ICIS*'23, Victoria, Canada

M. Au, M. Athanasakis-Kaklamanakis | Physics Beyond Colliders

9

# 3. Online experiments

#### **In-source**

SY

Accelerator Systems

• Reactive gas



26.03.24

**√STI** 

#### In-trap

M. Au, M. Athanasakis-Kaklamanakis | Physics Beyond Colliders

 Radio-frequency quadrupole coolerbuncher (RFQ-cb)



# **RaF characterization at CERN-ISOLDE**



v = 0

 Udrescu et al., Research Square 10.21203/rs.3.r. 2648482/v1 accepted in Nat. Phys. (2023)
 Athanasakis-Kaklamanakis *et al.*, arXiv 2308.14862 submitted to PRL (2023)
 Athanasakis-Kaklamanakis *et al.*, arXiV 2403.09336 submitted to PRA (2024)
 Wilkins *et al.*, arXiV 2311.04121 submitted to Science (2024)

#### **Excited states [2]**

• agreement  $\geq$  99.64% (~12 meV)



State lifetimes [3]

199192

• Radiative lifetime of A  ${}^{2}\Pi_{1/2}$  state

Nuclear magnetization effect [4]

• μ(<sup>225</sup>Ra)



11



SY

Accelerator Systems



# Multiple probes: AcF 1.00

#### **Characterization**

- t<sub>1/2</sub> and radioactivity challenging for offline setups
- 1 y proposal to beamtime





26.03.24



EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Laser ionization spectroscopy of AcF

September 28, 2021

M. Athanasakis-Kaklamanakis<sup>1,2</sup>, S.G. Wilkins<sup>3</sup>, M. Au<sup>4,5</sup>, R. Berger<sup>6</sup>, A. Borschevsky<sup>7</sup>,
 K. Chrysalidis<sup>8</sup>, T.E. Cocolios<sup>2</sup>, R.P. de Groote<sup>2</sup>, Ch.E. Düllmann<sup>5,9,10</sup>,
 K.T. Flanagan<sup>11,12</sup>, R.F. Garcia Ruiz<sup>3</sup>, S. Geldhof<sup>2</sup>, R. Heinke<sup>8</sup>, T.A. Isaseu<sup>13</sup>,
 J. Johnson<sup>2</sup>, A. Kiuberis<sup>7</sup>, Á. Koszorús<sup>1</sup>, L. Lalanne<sup>2</sup>, M. Mougeot<sup>1</sup>, G. Neyens<sup>2</sup>,
 L. Nies<sup>1,1,4</sup>, J. Reilly<sup>11</sup>, S. Rothe<sup>4</sup>, L. Schweikhard<sup>14</sup>, A.R. Vernon<sup>3</sup>, X.F. Yang<sup>15</sup>

[1] Athanasakis-Kaklamanakis, Wilkins, Au *et al.*, (2021) <u>https://cds.cern.ch/record/2782407</u>, INTC-P-615

[2] Athanasakis-Kaklamanakis and Au, (2023) CERN EP newsletter

[3] Athanasakis-Kaklamanakis, Au, Kyuberis, Zülch, Wibowo, Skripnikov, Reilly, Lalanne *et al., in preparation* 2024





# **Towards precision experiments at RIB facilities**

### **Preparation of molecule**

- Maximizing polarizability, inherent sensitivity
- Low-temperature molecular formation
- Control and selectivity of chemical reactions

### Preparation of "science state"

- Deceleration from extraction energy
- Cooling
- Noise E, B systematics

### Proposal

 test feasibility of delivering cold, prepared ensembles for precision measurements

26.03.24

• initial upgrades to existing infrastructure







#### Photos: ISOLDE OFFLINE 2 © 2019-2022 CERN



SY

Accelerator Systems

# **Summary: radioactive molecules for PBC**

# 1. Beam development at CERN-ISOLDE

- Provision of heavy, octupole deformed nuclei with sensitivity to symmetry violations
- Molecular formation techniques for delivery of sensitive, polarizable complementary probes for characterization

Z=89

AC

Actinium

#### 2. Radioactive species for offline precision experiments

 Collection and transportation of radioactive nuclei to precision experiments

3. Beam preparation towards precision for online experiments

• Feasibility of delivering cold, prepared ensembles for precision measurements



Opportunities for Fundamental Physics Research with Radioactive Molecules, arXiV 2302.02165 (2023), Rep. Prog. Phys. (2024) doi: 10.1088/1361-6633/ad1e39

Ra

SY

Accelerator Systems



# **Conclusion: a tipping point**

#### Community: rapidly growing, particle, nuclear, AMO physics, experimental and theory

- "In the next 10 years gains in sensitivity by several orders of magnitude over current bounds are possible and even likely for electrons, nucleons, atoms and molecules, with the very real chance of discovery." – Snowmass contribution, 2021
- INT Program INT-24 (March 2024) <u>https://www.int.washington.edu/programs-and-</u> workshops/24-1
- New Opportunities for Fundamental Physics Research with Radioactive Molecules, Virtual Meeting (2021)

Given the low relative cost of these experiments in terms of both funding ( $\leq$  \$10 M, and often  $\leq$ 1 M) and personnel (typically  $\leq$  10 people), pursuing many simultaneously is feasible. However, advancing to the next generation will require increases in scale and complexity. Many of the new approaches discussed here require sustained R&D budgets, theory support, and access to facilities when working with exotic nuclei, continued over several experimental generations to fully realize their projected gains. The field is moving very rapidly and requires risk tolerance, but it has proven that it can deliver results from a variety of novel approaches.

26.03.24



### **European EDM community**

- ECT\*, Trento (March 2024)
- Outcome: Formation of Europe-wide matterEDM network where experiments with unstable nuclei will be a major aspect for future work

#### EDMs: complementary experiments and theory connections









# **Thank you!**

IG

SY

Accelerator Systems

#### Acknowledgements

J. Ballof, R. Berger, A. Borschevsky, A. Breier, K. Chrysalidis, R.P. de Groote, Ch.E. Düllmann, C. Fajardo-Zambrano, P. Fischer, K. Flanagan, R.F. Garcia Ruiz, K. Gaul, P.F. Giesel, S. Gilardoni, R. Heinke, S. Hoekstra, N. Hutzler, A. Koszorus, A. Kyuberis, D. Lange, B.A. Marsh, G. Neyens, L. Nies, E. Reis, S. Rothe, A. Oleynichenko, M. P. Reiter, P. Schmidt-Wellenburg, C. Schweiger, L. Skripnikov, M. Tarbutt, S. Wilkins, W. Wojtaczka, The CRIS collaboration, The ISOLDE collaboration

Radioactive molecules community: growing every day

26.03.24



This project has received funding from the European's Union Horizon 2020 Research and Innovation Programme under grant agreement number 861198 project 'LISA' (Laser Ionization and Spectroscopy of Actinides) Marie Sklodowska-Curie Innovative Training Network (ITN)



M. Au, M. Athanasakis-Kaklamanakis | Physics Beyond Colliders

16

# **Funding request**

Catalyst to solidify an active and rapidly growing community with expertise in fundamental symmetries, nuclear, atomic, molecular, and optical physics, experimentalists and theorists.

#### **Beam development**

• 1 postdoc, 2-3 years

### **Feasibility and precision techniques**

- 1 postdoc, 2-3 years
- Collaboration with leaders in the European precision EDM community
  - S. Hoekstra (Precision Frontier, University of Groningen)
  - M. Tarbutt (Centre for Cold Matter, Imperial College London)

26.03.24

- M. P. Reiter (The Univerity of Edinburgh)
- P. Schmidt-Wellenburg (PSI)

### Infrastructure and consumables

• ~200k









**130112** university of groningen

IMPERIAL



THE UNIVERSITY of EDINBURGH

#### PAUL SCHERRER INSTITUT



# **Existing and planned searches**

### **Published:**

- eEDM: Cs, Tl, YbF (Imperial) [1], ThO (ACME) [2,3], HfF+ (JILA) [4]
- Schiff, MQM: <sup>129</sup>Xe, <sup>199</sup>Hg, <sup>225</sup>Ra [5], <sup>171</sup>Yb [6]

### **Planned / under development:**

 <sup>225</sup>Ra, <sup>223</sup>Ra molecules, FrAg, <sup>221/210</sup>Fr, RIKEN, <sup>229</sup>Pa, PaF<sup>3+</sup> MSU/FRIB, <sup>225/227</sup>AcF, <sup>229</sup>Th, <sup>175</sup>Lu, Old Dominion, Grau, <sup>181</sup>Ta, UNLV, Zhou



[1] Nature 473, 493 (2011)
 [2] Science 343, 269 (2014)
 [3] Nature 562, 355 (2018)
 [4] Science 381, 46 (2023)



[5] PRC 94, 025501 (2016)

[6] PRL 129, 083001 (2020)

# **Material developments**

#### **Gas injection**

Reactive/corrosive gases

#### **Reactants**

Mass markers •

#### **Target materials**

- Particle size •
- Open porosity











#### Beam Intensity = $\sigma \cdot j \cdot N_t \cdot \varepsilon$

- $N_t$  Number of target atoms
- j Proton flux [cm<sup>-2</sup>]
- $\sigma$  Cross section [mb]
- $\varepsilon$  Efficiency [%]

 $\mathcal{E} = \mathcal{E}_{diff} \mathcal{E}_{eff} \mathcal{E}_{is} \mathcal{E}_{ext} \mathcal{E}_{sep} \mathcal{E}_{trans}$ 





# **Material developments**

#### **Gas injection**

Reactive/corrosive • gases

#### Reactants

Mass markers •

#### **Target materials**

- Particle size •
- Open porosity











#### Beam Intensity = $\sigma \cdot j \cdot N_t \cdot \varepsilon$

- $N_t$  Number of target atoms
- j Proton flux [cm<sup>-2</sup>]
- $\sigma$  Cross section [mb]
- $\varepsilon$  Efficiency [%]
- $\mu$  diffusion delay parameter
- G grain size

 $\mathcal{E} = \mathcal{E}_{diff} \mathcal{E}_{eff} \mathcal{E}_{is} \mathcal{E}_{ext} \mathcal{E}_{sep} \mathcal{E}_{trans}$ 

 $\varepsilon_{\rm diff} \propto \sqrt{\mu \cdot T_{1/2}} \propto \frac{1}{G}$ 



Adapted from: J.P. Ramos. EMIS XIII, CERN, Geneva, 2018.







# Material developments

#### **Gas injection**

Reactive/corrosive • gases

#### Reactants

Mass markers •

#### **Target materials**

- Particle size •
- Open porosity









26.03.24



#### Beam Intensity = $\sigma \cdot j \cdot N_t \cdot \varepsilon$

- $N_t$  Number of target atoms
- j Proton flux [cm<sup>-2</sup>]
- $\sigma$  Cross section [mb]  $\varepsilon$  – Efficiency [%]
- $\mu$  diffusion delay parameter
- G grain size

Small G, high T  $\implies$  Increased  $\varepsilon_{diff}$ 

 $\varepsilon_{\rm diff} \propto \sqrt{\mu \cdot T_{1/2}} \propto \frac{1}{G}$ 

 $\mathcal{E} = \mathcal{E}_{diff} \mathcal{E}_{eff} \mathcal{E}_{is} \mathcal{E}_{ext} \mathcal{E}_{sep} \mathcal{E}_{trans}$ 

 $\mu = \frac{\pi^2 D}{C^2}$ 

Increased  $\varepsilon_{diff}$  (

Adapted from: J.P. Ramos. EMIS XIII, CERN, Geneva, 2018.







Accelerator Systems



Accelerator Systems







### **Detection and identification**



# **Molecular structure**



#### **Electronic**

 $> 5000 \text{ cm}^{-1}$ •

### Vibrational

300 - 3000 cm<sup>-1</sup> 

Accelerator Systems

### **Rotational**

1 - 100 cm<sup>-1</sup> •



SY

(STI

# AcF spectroscopy

### **Experimental** [1]

• (8) $\Pi_1 \leftarrow X \ ^1\Sigma_0$ 

### **Nuclear theory**

- previous values from scaling factors
- $S_{int} \leftrightarrow Q_0^3 [2]$
- DFT:  $S_{int}(^{227}Ac) = 37.1(16) e \text{ fm}^3$ , =1.4  $S_{int}(^{225}Ra) = 26.6(19) e \text{ fm}^3$ [3]

### **Molecular theory**

- IH-FS-RCCSD
- IP = 48,866 cm<sup>-1</sup>
- $D_e = 57,214 \text{ cm}^{-1}$

[1] Athanasakis-Kaklamanakis and Au, (2023) CERN EP newsletter
[2] Dobaczewski, Engel, Kortelainen, Becker, Phys. Rev. Lett. **121**, 232501 (2018)

[3] Athanasakis-Kaklamanakis, Au, Kyuberis, Zülch, Wibowo, Skripnikov, Reilly, Lalanne et al., in prep. (2024)

[4] Skripnikov et al., J. Chem. Phys **159** 124301 (2023)

[5] Skripnikov et al., Phys. Chem. Chem. Phys 22 18374-18380 (2020)



**FIG. 3.** The strongest transitions (blue arrows) from the  $X(1)0^+$  ground state of AcF and the strongest transitions for stimulated emission (green arrows). Levels accessible with two-step excitations are shown with solid gray lines. Dotted lines depict electronic states that are hardly accessible from the ground state with either direct or two-step excitations. It is noted that all transitions to the  $\Omega = 0^-$  states have low probabilities and are not shown here.  $T_e$  values (cm<sup>-1</sup>) are shown.



**Table 2** Molecular constants X and  $W_{\rm S}^{(2)} = 6X/r^{\rm sp}$  ( $e/a_{\rm B}^4$ ,  $a_{\rm B} = 1$  Bohr) calculated at different levels of theory, given in square brackets

| Mol.    | State              | X [HF]      | X [CCSD]    | X [CCSD(T)] | r <sup>sp</sup> | $W_{\rm S}^{(2)}$ [CCSI | D(T)] |
|---------|--------------------|-------------|-------------|-------------|-----------------|-------------------------|-------|
| AcF     | $^{1}\Sigma^{+}$   | -2022       | -1569       | -1593       | 1.16            | -8240                   |       |
| AcN     | $^{1}\Sigma^{+}$   | -10580      | -9415       | -8950       | 1.16            | -46295                  |       |
| $AcO^+$ | $^{1}\Sigma^{+}$   | -13362      | -11600      | -11302      | 1.16            | -58461                  |       |
| ThO     | $^{1}\Sigma^{+}$   | -3965       | -3187       | -3332       | 1.17            | -17085                  |       |
| $EuO^+$ | $(\mathbf{f}^6)^a$ | $-2475^{a}$ | $-2140^{a}$ | $-2114^{a}$ | 1.09            | $-11677^{a}$            | IJ    |
| EuN     | $(\mathbf{f}^6)^a$ | $-1975^{a}$ | $-1847^{a}$ | $-1890^{a}$ | 1.09            | $-10419^a$              | L .   |
| TlF     | $1\Sigma^+$        | 9111        | 7262        | 7004        | 1.13            | 37 192                  |       |
|         |                    |             |             |             |                 |                         |       |

<sup>*a*</sup> The spin–orbit part of the GRECP operator has been omitted in the calculation. Therefore, we give only the configuration of the molecular state.



#### SY Accelerator Systems



# **Beam preparation**

### **Molecular formation**

- Ion source developments:
  - FEBIAD, photocathode, LIST
- RFQ gas mixing and injection tests (+TRIUMF)
- Implantation/ablation (+KUL)

### Laser setup

- YOL2 laser lab development (+KUL)
- New end of beamline
- Laser path to RFQ

### Scheme development / spectroscopy

- In-source: Offline LIST fluorides, oxides
- In-trap: pending molecular formation studies polyatomics





# Ion source developments

#### **Molecular breakup and characterization studies**

- FEBIAD-type ion sources [1,2] •
- Electron energy and source optimization •
- lon source systematics •

### **Photocathode ion sources [3]**

Cold (room-temperature) environments •

#### **In-source spectroscopy** [4]

PI-LIST: sub-Doppler hot-cavity in-source spectroscopy •

26.03.24

**CERN-ISOLDE** implementation •

[1] Maldonado (2023) PhD thesis [2] Martinez Palenzuela (2020) PhD thesis [3] Ballof . et al., 2022) J. Phys.: Conf. Ser. 2244 012072 [4] Heinke et al. (2023) NIM B. 541 (8-12)

SY

Accelerator Systems



Gas



M. Au, M. Athanasakis-Kaklamanakis | Physics Beyond Colliders