

Progress with the laser system of the Gamma Factory SPS proof of principle

Eduardo Granados SY/STI-LP for the Gamma Factory Collaboration

Outline

- Introduction:
 - Aim of the project.
 - **Concept**: exploiting the Doppler effect in ultra-relativistic partially stripped ion beams
 - The **magnitude** of the Gamma-ray photon flux leap
- **Roadmap** Proof of principle experiment in SPS, final experiment in the LHC
- Status:
 - Laser systems, beamline design
 - Experimental area (TI18)
 - Expected performance: IJCLab collaboration
- Conclusions

Physics Beyond Colliders: The Gamma Factory at CERN

Examples of physics opportunities (from 2021) Now **many more** additional papers have been published

Volume 534, Issue 3

Special Issue: Physics Opportunities with the Gamma Factory

March 2022

Issue Edited by: Dmitry Budker, Mikhail Gorchtein, Mieczyslaw Witold Krasny, Adriana Pálffy, Andrey Surzhykov

Review

Open Access
 Expanding Nuclear Physics Horizons with the Gamma Factory

Research Articles

🔂 Full Access

🗌 Local Lorentz Invariance Tests for Photons and Hadrons at the Gamma Factory

∂ Open Access□ Vacuum Birefringence at the Gamma Factory

🔂 Full Access

Double-Twisted Spectroscopy with Delocalized Atoms

Full Access

Delta Baryon Photoproduction with Twisted Photons

🔄 🖯 Open Access

🗌 Resonant Scattering of Plane-Wave and Twisted Photons at the Gamma Factory

🔁 Full Access

Probing Axion-Like-Particles at the CERN Gamma Factory

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

🖯 Open Access

Access to the Kaon Radius with Kaonic Atoms

🔒 Full Access

Radioactive Ion Beam Production at the Gamma Factory

🔂 Open Access

Possible Polarization Measurements in Elastic Scattering at the Gamma Factory Utilizing a 2D Sensitive Strip Detector as Dedicated Compton Polarimeter

🔂 Full Access

Polarization of Photons Scattered by Ultra-Relativistic Ion Beams

Comparison to other X-ray and Gamma-ray sources

"Can one make a technological leap of 7 orders of magnitude to deliver similar fluxes to FELs in the Gamma-rays?"

Example (GF for nuclear physics app):

European XFEL	Gamma Factory
27,000 pulses/s	20 MHz
24 keV	18 MeV
10 ¹⁶ photons/s	3.6 x 10 ¹⁷ photons/s
1.4 mJ/pulse	5 mJ/pulse (laser)
38 W (J/s)	570 kW (kJ/s)

The Gamma Factory operates with **MW** electric power and 10s **MJ** of stored beam energy

So far, the *only* facility currently providing such parameter space is the **LHC**

Basic idea: Use the Doppler effect with ultra-relativistic ions

Emission

The magnitude of the Gamma source intensity leap

Inverse Compton scattering	Cross-section	Requirements	Features	
Mum Laser Laser (μημη μημη μημη μημη μημη μημη μημη μημ	Electrons: $\sigma_e = 8\pi/3 \times r_e^2$ r_e - classical electron radius $\sigma_e = 6.6 \times 10^{-25} \text{ cm}^2$	$E_{beam} = 1.5 \text{ GeV}$ LINAC or LWFA Electron fractional energy loss: emission of 150 MeV photon: $E_{\gamma}/E_{beam} = 0.1$ (electron is lost!)	 Relatively "compact" Large laser system Low γ photon flux (10⁹ ph/s) 	
Gamma FactoryImage: provide the second s	$\sigma \ge 10^9$ Partially Stripped lons: $\sigma_{res} = \lambda_{res}^2 / 2\pi$ λ_{res} - photon wavelength in the ion rest frame $\sigma_{res} = 5.9 \ge 10^{-16} \text{ cm}^2$	$E_{beam} = 574\ 000\ GeV$ (LHC) Electron fractional energy loss: emission of 150 MeV photon: $E_{\gamma}/E_{beam} = 2.6 \times 10^{-7}$ (ion undisturbed!)	 Vnique Gamma-ray beam Modest laser requirements Ultrahigh γ photon flux (10¹⁶ ph/s) Transparent to accelerators Beam cooling capability 	

Expected performance of the PoP experiment at SPS

Proposed parameters for GF PoP experiment

J. Bieroń, M. W. Krasny, W. Płaczek, S. Pustelny, Optical Excitation of Ultra-Relativistic Partially Stripped Ions. *ANNALEN DER PHYSIK* 2022, 534, 2100250.

Proof of principle experiment location

Proof of principle experimental setup

Fabry Perot enhancement cavity principle

- Optical cavity
 - Recycle the laser
 - Enhance the injected power due to resonance
- Hemi-spherical cavity mode
 - Spherical mirror: waist size control
 - Planar mirror: compensates for length change
- Injected beam and cavity mode:
 - Same repetition rate
 - Beam profile matching
 - Polarization matching
 - Phase matching
- Allows significant enhancement factors on the laser power (10³~10⁴)

Fabry Perot enhancement cavity principle

CÉRN

E. Granados | PBC Annual Workshop 2024 |

25.03.24

Laser systems and integration into SPS: ingredients

Laser system

Fabry-Perot cavity assembly

Integration in SPS

Laser transport beamline

Sensitivity of the Fabry-Perot cavity to misalignments

The couplings k between an input Gaussian beam and cavity Cartesian modes n > 0,0 and cylindrical modes p > 0,0 due to geometrical perturbations from alignment may be derived from the equations of Bayer-Helms. We consider here couplings due to displacement, angle mismatch and waist size mismatch only.

- The injection is most sensitive to angle misalignment
- Not so sensitive to lateral displacement or waist size mismatch mainly because the cavity spot size is relatively large (1 mm diameter)
- Prioritize angle stability rather than position -> avoid image relay systems such as 4f telescopes.
- Recommend to use beam pointing stabilization system -> Check radiation exposure to electronics (R2E).

E. Granados et al. "Laser beam transport and stabilization considerations for the Gamma Factory proofof-principle experiment" CERN-PBC-Notes-2023-007 (https://cds.cern.ch/record/2868829)

SPS Vibration study for laser beamline stabilization

- Measured the vibration spectral content during 6 hours with SPS equipment switched ON.
- Accuracy was down to few pm in length and up to 10 kHz in frequency.
- Largest contributions are acoustics below 1 kHz, with eventual tones at 2.3 kHz.
- Need to check the coupling of vibrations to future laser beamline and with a Fabry-Perot cavity resembling the future experiments

Laser transport system pillar design

R. Seidenbinder SY/STI-TCD

- Simple stainless structure with extrusion to mount vacuum cubes
- Requires drilling on SPS ring floor and attachment to ceiling -> ECR document
- Tests for stability will be carried out in the North Area in the summer

Pillar resonances

- Analysis of resonant modes without attachment to ceiling.
- All the contacts are bonded. No additional mass on the structure was considered
- The modes are mismatched to the existing vibrational modes found in SPS
- An experiment using a reference Fabry-Perot cavity and a single-frequency CW laser will be performed in the North Area.

TI18 tunnel inspection in 2023

- TI18 tunnel was opened during fall 2023. Inspection by the **fire brigade** was completed: air in tunnel is relatively clean, dusty atmosphere after chicane.
- **RP inspection** was completed.
- First section of the tunnel (corresponding to future laser room) was **3D scanned**.
- **Batmons** radiation monitors (2 of them) were installed inside the tunnel.

Laser front-end was procured and tested at CERN

Excellent phase-noise performance

Piezos tuning ranges

Pulse duration

Supply accepted and shipped to IJCLab Nov 2023 for further testing with FP cavity

Testing of laser at IJCLab: Goal

200kW measured with ThomX prototype cavity (long-term)

IJCLab record :

- 50kW measured with ThomX cavity (long-term, Gain ~ 10,000)
- 400kW measured with ThomX prototype cavity (not stable)
- 200kW measured with ThomX prototype cavity (long-term)

World record :

- Cavity average power = 670kW@10ps ; 400kW@250fs (not stable)
- Laser + amplifier : 420W @ 250 MHz
- Gain ~ 2,000
- Carstens et al. Opt Lett 39 (2014) 2595
- Current goal: reproduce these results with Gamma Factory PoP laser at 160 MHz

Testing of laser at IJCLab: Steps

- 1 Seeder power measurement
- 2 Power measurement after fiber injection
- 3 Phase noise measurement
- (4) Cavity alignment and locking with CW laser and old mirrors
- 5 Cleaning environment
- 6 Replacement with new mirrors and lock the cavity
- 7 Measure finesse and FSR with CW laser
- 8 Operate with pulsed laser
 - I. Alignment
 - II. CEP tuning
 - III. Telescope tuning
 - IV. Lock cavity (PDH technique)
 - V. Quantification of power inside + size of beam on mirrors + pulse duration
- 9 Raise power slowly

Testing of laser at IJCLab: laser power measurements

Laser start

Power meter	Readout		
Thorlabs S310C	181.5 +/- 0.5 mW		
First 2 h	nours		
	Value		
Parameter			
Average Power	181.5 mW		
Min Power	180.7 mW		
Max Power	182.1 mW		
Variance / RMS Stability	268 uW (0.148%)		
Ratio Max/Min, Pk-Pk	1.008:1 (0.03 dB)		

Overnight (8 hours)

Parameter	Value
Average Power	180.0 mW
Min Power	179.4 mW
Max Power	180.5 mW
Variance / RMS Stability	151.6 uW (0.084%)
Ratio Max/Min, Pk-Pk	1.006:1 (0.03dB)

"WARMED UP"

Coupled to fiber (IJCLab)

Phase noise measurements at IJCLab

Testing of laser at IJCLab

SBOX optical setup with 1:10 scale

SBOX size : 1020 x 520 mm Windows diameter : 20mm (small) / 40mm (large) Mounts width : 60mm FSR = 160.27MHz Lrt = 1.87 m

Xinyi Lu, Ronic Chiche, Aurelien Martens

Testing of laser at IJCLab: improving coupling efficiency

HASO Wavefront sensors

Telescope

Electrically controlled injection mirrors

Current status: coupling efficiency ~ 30%

> Xinyi Lu, Ronic Chiche, Aurelien Martens

Testing of laser at IJCLab: new cavity mirrors

Mirror	Nom	Туре	Substrate	Transmission @1031nm(ppm)	Diffusion at center @ 1064 nm (ppm)	Diffusion @ 1064 nm (ppm)	Absorption @1064 nm(ppm)
M1	17/2	Plane	FS	115	2.5	3	<0.6
M2	18/4	Plane	ULE	3	3	7	<0.6
M3	18/11	Concave	ULE	3	3.8	4.5	<0.6
M4	18/12	Concave	ULE	3	2.8	4	<0.6

- Mirrors manufactured by "Laboratoire des Matériaux Avancés" (LMA)
- Metal deposit in the coating layers from the coating machine

Xinyi Lu, Ronic Chiche, Aurelien Martens

Newport ZeroDrift[™] optical mirror mounts compensate the mount for temperature-induced alignment drift. This innovation has resulted in an 85% improved optical pointing stability compared to other stainless steel mounts.

Exp RTL = 145 ppm Exp finesse = **43,332** Exp linewidth = 3.7 kHz

Real finesse = 16,760Extra loss = 230 ppm

Finesse is related to loss. Reasons for lower finesse maybe:

- Dust on the mirror
- Laser beam is not in the center of the mirror

.

.

Testing of laser at IJCLab: Next steps

Obtain higher stable circulating power by using new seed laser and new mirrors.

- > New seed laser (CERN property): Menhir, frep = 160 MHz, low phase noise, good stability
- ➤ New mirrors (ThomX RD budget): LMA, absorption loss < 0.6 ppm with no hot point absorber, ROC 0.5m → 4 mirror cavity at 160MHz</p>

Target value:

FSR = 160 MHz Cavity Linewidth < 5.3 kHz Finesse > 30,000 Gain > 10,000 Amplified power ~ 70 W Coupling efficiency ~ 70% Circulating power > 400 kW

Xinyi Lu, Ronic Chiche, Aurelien Martens

Testing of laser at IJCLab: Summary

To Do:

- Improve finesse: clean the mirrors one by one, realign the cavity, replace and observe the mirror with a microscope...
- Replace the CW laser with the pulsed laser.
- Finally, raise injected power.

Issue when increasing average power

Damage spot due to heating

Xinyi Lu, Ronic Chiche, Aurelien Martens

	Current status	GF PoP
FSR	160 MHz	40 MHz
Cavity linewidth	10 kHz	4 kHz
Finesse	17,000	10,000
Gain	3,400	5,000
Coupling efficiency	70%	70%
Amplified power	70 W	50 W
Estimated power	170 kW	180 kW
	Feb 2024	

Next steps:

Tender amplifier to 100W Installation at SPS in 2025-27

Conclusions

Gamma Factory

- Proof of principle experiment starting 2027 to produce up to <u>44 keV photons at 10¹⁵ ph/s</u>
- Gamma Factory in LHC various scenarios considered producing photons of 10s-100s MeV at up to <u>10¹⁷ ph/s</u>

Status of the optical systems for PoP experiment

- TI18 area, conversion to a laser lab in LS3
- Ultra low-phase noise laser and amplification chain procurement and commissioning
- Fabry-Perot Cavity with large gain factor pumped by 100W laser at IJCLab. After successful test transfer to CERN
- Laser beam delivery system testing, controls, integration and diagnostics at IP
- Demonstrate full remote end-to-end operation of laser beams and Fabry-Perot cavity

Acknowledgements

Gamma Factory Collaboration:

100+ physicists from 40 institutes in 15 countries contributed to the GF studies in its various aspects A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴,
G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci²,
J. Bieroń⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴,
K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Dupraz¹¹, Y. Dutheil², K. Dzierżęga⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster
Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶,
T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska²,
M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh²,
A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, D. Nutarelli¹¹, L.J. Nevay¹, V. Pascalutsa²⁸,
Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawan², S. Redaelli²,
Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann²,
R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stoehlker¹⁷, A. Surzhykov²¹, I. Tolstikhina⁶,
F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

Special thanks to:

Xinyi Lu, Ronic Chiche, Aurelien Martens, Yann Dutheil, Bruce Marsh, F. Galleazzi, R. Seidenbinder, M. W. Krasny, Baptiste Groussin, and many other CERN teams...

home.cern

Variation of output power, center wavelength and bandwidth changing PZT voltages

SY

Accelerator Systems

(STI)

Beam profile and pulse duration

						— Me	asured -	– sech ²	fit
1.0	\mathbf{r}	MENHIR-1 SN4609001	030	1		1	$ au_{\text{pull}}$	$_{\rm se} = 200{\rm fs}$	s -
al (arb .0	3-					\backslash			-
n sign	3-			/		\backslash			-
relatio	1								-
10cor	2								-
₹ 0.0			/						
		810		т	Т	н	11	212	
		-600	-400	-200	0	200	400	600	
					Time (fs)			

(STI)

Parameter	Value
Effective diameter (86.5%)	1.171 mm
Gaussian fit 86.5% diameter	0.972 mm, 0.956 mm
Effective area	1.459 mm ²

Measurement	Pulse duration
Sech fitting	189 fs
Gaussian fit	207.5 fs
Factory acceptance test (FAT)	200

SY

Accelerator Systems

Output spectrum

Measurement	SAT	FAT
Center wavelength	1031.8544 nm	1031.8 nm
3 dB bandwidth	7.0399 nm	7.0 nm

SY

Accelerator Systems

(STI)