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Laser cooling: excitation & emission
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Laser cooling: excitation & emission
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Laser cooling: Doppler shifting
A

Key: every particle experiences a different laser
wavelength due to Doppler shift

Energy| = Excited states

Doppler shift

Detuned laser

Ground state

perfect small

dp/p dp/p

Conclusion: Only excite narrow band of dp/p
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Xenon simulations

e Code: laser cooling module was
developed in Xsuite (CERN
beam dynamics code) [1]

e Excitation: solve Optical Bloch
Equations (OBE)

e Emission: particle loses energy
based on emission angle
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Fraction of excited particles: 13.9%

Xenon simulations
401 0.75§
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e Code: laser cooling module was 025 3
developed in Xsuite (CERN " e
beam dynamics code) [1] — e
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e Excitation: solve Optical Bloch CLs
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e Emission: particle loses energy 25 25
based on emission angle £ 00 00
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Longitudinal cooling + horizontal cooling
thanks to coupling with dispersion (2.4m)
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Optimal transverse cooling
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Transverse cooling

.~ | cooling rate = -a
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Xenon IBS growth rates
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Xenon IBS growth rates
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Xenon equilibrium
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Xenon IBS growth rates
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Xenon IBS growth rates
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Optimise Xenon cooling
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Optimise Xenon cooling
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Optimise Xenon cooling
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Cooling rate [1/s]

Optimise Xenon cooling
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How does Xenon compare to other ions?
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Cooling equilibrium of ions
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Summary and outlook

Summary:
e Developed laser cooling tools in Xsuite
e Used tools to estimate cooling rates of xenon,calcium, and lead
e Compared cooling rates against IBS
e Xenon and calcium show small equilibrium emittances
Outlook:
e Simulate lead cooling of Gamma Factory proof-of-principle experiment.
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Photon generating mode

50
0
0 2 6 8
O [mrad]

Property Pb7%+ Xe Ca'’*
Laser Wavelength (nm) 2207.46 1035.17 769.81
Intensity of Ion Beam 1.90x 108 420x 108  2.77 x 10°
Fraction of Excited Particles 16.2% 17.7% 17.7%
Number of Emitted Photons 3.07x 107 743 %107 4.92x 108
Maximum Emitted Photon (Kev) 94.91 202.39 272.16
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1e—4 Fraction of excited particles: 17.7%
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Transverse cooling example
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Xenon example

small gamma -> small Doppler shift

Fraction of excited particles: 11.0%

large gamma -> large Doppler shift

Fraction of excited particles: 20.8%

401 1.00
80 1.00
(]
301 0.75 > o
e} = 60 - 0.75 &>
g 20 0.50 = E E
= <
3 = § 40 0.50 2
] =
10 0255 20 025 3
0l - 0.00 0 0.00
cumulative cumulative
le—4 0-fe—a 5 Lo g lo=t E?-Pe—4 5 1.0
8 N 3 q ,
- Ground state : Ground state ’
61 Excited 61 6 Excited e 2 61
41 44 4 41
2] 2 2 2
o
[oH ~
= 0 0 2 0 0
=¥
= LS
-2 . =2F Y -2
—4 - .,," —4 ..
. —41 -4
° 1 ]
—61 —61
- 1 —6 -6
-8 -8 :
‘ -3 ) -1 0 1 2 3 0 50
-3 -2 -1 0 1 2 3 0 20 X [mm] count

count

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams — the Xenon case 3




Parameter

Value

A - Wavelength (fiw - Photon energy)
/A - RMS relative band spread

[/ - Single pulse energy at IP

Laser waist radius IP (op = wyp /2]
#y, - Collision angle

1034 nm (1.2 eV)
2% 104

Fml

1.3 mm

2.6

Parameter Value
Px. By 54.47, 44.40
(X, ¥y, -1.55,1.32
Yx> Yy 0.06. 0.06
Dy, D, 2.4.0.0

Dp,,D,y 0.09, 0.0
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Second harmonics: Xenon

Virtual State

A e smaller laser wavelength

N\ A=\/2 e smaller laser pulse energy
le—-2

Ai 61 — Xe3?* Transverse
m 10 s ~-—- Xe*** Longituindal
41 —— Xe3®* 2nd harmonic Transverse
---- Xe3®* 2nd harmonic Longituindal
V E 21
Ground State [3] —
o 0] — .S/
—
©
Property Xenon Xenon 2™ harmonic o —2-
Excited Lifetime (ps) 3 3 g
]
Transition Energy (eV) | 492.22 492.22 8 4
Lorentz factor 152.5162 | 102.2579 ©
Laser Wavelength (nm) | 768 515 —6 N /
Pulse energy (mJ) 5 2.5
_8 ~ Q“"_._._:::/}j,
-0.004 -0.002 0.000 0.002 0.004

Horizontal laser offset [m]
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Lanzhou benchmark

Ap/p (%107)
-9.2 -4.6 0.0 4.6 9.2
e Solve Optical Bloch _
Equations (OBE) RLUHS'. : :
e Compare with Lanzhou | ‘ g&eoretlgil.Ime\./\cl;dr;[h__S%(se;g
experiment e e s.erv.e |r?eW| th=5.7e-
—— Xsuite linewidth = 5e-6
(c) ——110s
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le—2

6 Xe®l* Transverse
Xe?l* Longitudinal
—— opt. t li =
4 i OptL. transverse cooling 61 Xe51+ Transverse
Xe51* Longitudinal
4{ — opt. transverse cooling
— counteract IBS
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