

Laser cooling of the SPS ion beams – the Xenon case

Acknowledgements: D. Gamba, G. Franchetti, A. Petrenko, W. Krasny

Peter Kruyt

March 25th 2024

Outline

- Laser cooling introduction
- Xenon cooling rates
- Xenon vs IBS
- Comparison with lead and calcium
- Conclusions

Laser cooling: excitation & emission

Step 1: excitation

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ³

Laser cooling: excitation & emission

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁴

Laser cooling: Doppler shifting

Conclusion: Only excite narrow band of dp/p

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁵

Studied ions

Progress in Particle and Nuclear Physics 114 (2020) 103792

Contents lists available at ScienceDirect
Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Article history:

Gamma Factory

Keywords:

ion beams

laser cooling

Higgs boson Standard Model

HL-LHC

High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams*

Check

M.W. Krasny^{a,b,*}, A. Petrenko^{c,b}, W. Płaczek^d

⁴ LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris, France ^b CERN, Geneva, Switzerland ^b Gudker Institute of Nuclear Physics, Prospekt Akademika Lavrent/yeva 11, Novosibirsk, Russia

^d Institute of Applied Computer Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Krakow, Poland

ARTICLE INFO

Available online 26 May 2020

ABSTRACT

The existing CERN accelerator infrastructure is world unique and its research capacity should be fully exploited. In the coming decade its principal modus operandi will be focused on producing intense proton beams, accelerating and colliding them at the Large Hadron Collider (LHC) with the highest achievable luminosity. This activity should, in our view, be complemented by new initiatives and their feasibility studies targeted on re-using the existing CERN accelerator complex in novel ways that were not conceived when the machines were designed. They should provide attractive, ready-to-implement research options for the forthcoming paradigm-shift phase of the CERN research. This paper presents one of the case studies of the Gamma Factory initiative (Krasny, 2015) a proposal of a new operation scheme of ion beams in the CERN accelerator complex. Its goal is to extend the scope and precision of the LHC-based research by complementing the proton-proton collision programme with the high-luminosity nucleus-nucleus one. Its numerous physics highlights include studies of the exclusive Higgs-boson production in photon-photon collisions and precision measurements of the electroweak (EW) parameters. There are two principal ways to increase the LHC luminosity which do not require an upgrade of the CERN injectors: (1) modification of the beam-collision optics and (2) reduction of the transverse emittance of the colliding beams. The former scheme is employed by the ongoing high-luminosity (HL-LHC) project. The latter one, applicable only to ion beams, is proposed in this paper. It is based on laser cooling of bunches of partially stripped ions at the SPS flat-top energy. For isoscalar calcium beams, which fulfil the present beam-operation constrains and which are particularly attractive for the EW physics, the transverse beam emittance can be reduced by a factor of 5 within the 8 seconds long cooling phase. The predicted nucleon-nucleon luminosity of $L_{\rm NN} = 4.2 \times 10^{34} \, {\rm s}^{-1} {\rm cm}^{-2}$ for collisions of the cooled calcium beams at the LHC top energy is comparable to the levelled luminosity for the HL-LHC proton-proton collisions, but with reduced pile-up background. The scheme proposed in this paper, if confirmed by the future Gamma Factory proof-of-principle experiment, could be implemented at CERN with minor infrastructure investments. © 2020 Elsevier B.V. All rights reserved.

CERN

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁶

Studied ions

Progress in Particle and Nuclear Physics 114 (2020) 103792

Contents lists available at ScienceDirect
Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Article history:

Gamma Factory

Keywords:

ion beams

laser cooling

Higgs boson Standard Model

HL-LHC

High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams*

Check for updates

M.W. Krasny^{a,b,*}, A. Petrenko^{c,b}, W. Płaczek^d

⁴ LPNHE, Sorborne Universit
⁶, Universit
⁶ de Paris, CNRS/IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris, France ^b CERN, Geneva, Switzerland ⁶ Judker Institute of Nuclear Physics, Prospekt Akademika Lavrentyeva 11, Novosibirsk, Russia

^d Institute of Applied Computer Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Krakow, Poland

ARTICLE INFO

Available online 26 May 2020

ABSTRACT

The existing CERN accelerator infrastructure is world unique and its research capacity should be fully exploited. In the coming decade its principal modus operandi will be focused on producing intense proton beams, accelerating and colliding them at the Large Hadron Collider (LHC) with the highest achievable luminosity. This activity should, in our view, be complemented by new initiatives and their feasibility studies targeted on re-using the existing CERN accelerator complex in novel ways that were not conceived when the machines were designed. They should provide attractive, ready-to-implement research options for the forthcoming paradigm-shift phase of the CERN research. This paper presents one of the case studies of the Gamma Factory initiative (Krasny, 2015) a proposal of a new operation scheme of ion beams in the CERN accelerator complex. Its goal is to extend the scope and precision of the LHC-based research by complementing the proton-proton collision programme with the high-luminosity nucleus-nucleus one. Its numerous physics highlights include studies of the exclusive Higgs-boson production in photon-photon collisions and precision measurements of the electroweak (EW) parameters. There are two principal ways to increase the LHC luminosity which do not require an upgrade of the CERN injectors: (1) modification of the beam-collision optics and (2) reduction of the transverse emittance of the colliding beams. The former scheme is employed by the ongoing high-luminosity (HL-LHC) project. The latter one, applicable only to ion beams, is proposed in this paper. It is based on laser cooling of bunches of partially stripped ions at the SPS flat-top energy. For isoscalar calcium beams, which fulfil the present beam-operation constrains and which are particularly attractive for the EW physics, the transverse beam emittance can be reduced by a factor of 5 within the 8 seconds long cooling phase. The predicted nucleon-nucleon luminosity of $L_{\rm NN} = 4.2 \times 10^{34} \, {\rm s}^{-1} {\rm cm}^{-2}$ for collisions of the cooled calcium beams at the LHC top energy is comparable to the levelled luminosity for the HL-LHC proton-proton collisions, but with reduced pile-up background. The scheme proposed in this paper, if confirmed by the future Gamma Factory proof-of-principle experiment, could be implemented at CERN with minor infrastructure investments.

© 2020 Elsevier B.V. All rights reserved.

Property	Pb ⁷⁹⁺	Xe ⁵¹⁺	Ca ¹⁷
Mass Number (A)	208	129	40
Atomic Number (Z)	82	54	20
Charge (e)	79	51	17
Beam intensity(1e8)	1.90	4.20	27.7
Excited Lifetime (ps)	76.6	3	0.43
Transition Energy (eV)	230	492	661
Lorentz factor γ	96	152	205
Laser wavelength (nm)	1031	768	768

(Doppler shift scales with γ)

Laser wavelength + Doppler shift -> Transition energy

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁷

Studied ions

Progress in Particle and Nuclear Physics 114 (2020) 103792

Contents lists available at ScienceDirect
Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Article history.

Gamma Factory

Keywords:

ion beams

laser cooling

Higgs boson Standard Model

HL-LHC

High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams*

Check for updates

M.W. Krasny^{a,b,*}, A. Petrenko^{c,b}, W. Płaczek^d

⁴ LPNHE, Sorbonne Universit
⁶, Universit
⁶ de Paris, CNRS/IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris, France ^b CERN, Geneva, Switzerland ⁶ Judker Institute of Nuclear Physics, Prospekt Akademika Lavrentyeva 11, Novosibirsk, Russia

^d Institute of Applied Computer Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Krakow, Poland

ARTICLE INFO

Available online 26 May 2020

The existing CERN accelerator infrastructure is world unique and its research capacity should be fully exploited. In the coming decade its principal modus operandi will be focused on producing intense proton beams, accelerating and colliding them at the Large Hadron Collider (LHC) with the highest achievable luminosity. This activity should, in our view, be complemented by new initiatives and their feasibility studies targeted on re-using the existing CERN accelerator complex in novel ways that were not conceived when the machines were designed. They should provide attractive, ready-to-implement research options for the forthcoming paradigm-shift phase of the CERN research. This paper presents one of the case studies of the Gamma Factory initiative (Krasny, 2015) a proposal of a new operation scheme of ion beams in the CERN accelerator complex. Its goal is to extend the scope and precision of the LHC-based research by complementing the proton-proton collision programme with the high-luminosity nucleus-nucleus one. Its numerous physics highlights include studies of the exclusive Higgs-boson production in photon-photon collisions and precision measurements of the electroweak (EW) parameters. There are two principal ways to increase the LHC luminosity which do not require an upgrade of the CERN injectors: (1) modification of the beam-collision optics and (2) reduction of the transverse emittance of the colliding beams. The former scheme is employed by the ongoing high-luminosity (HL-LHC) project. The latter one, applicable only to ion beams, is proposed in this paper. It is based on laser cooling of bunches of partially stripped ions at the SPS flat-top energy. For isoscalar calcium beams, which fulfil the present beam-operation constrains and which are particularly attractive for the EW physics, the transverse beam emittance can be reduced by a factor of 5 within the 8 seconds long cooling phase. The predicted nucleon-nucleon luminosity of $L_{\rm NN} = 4.2 \times 10^{34} \, {\rm s}^{-1} {\rm cm}^{-2}$ for collisions of the cooled calcium beams at the LHC top energy is comparable to the levelled luminosity for the HL-LHC proton-proton collisions, but with reduced pile-up background. The scheme proposed in this paper, if confirmed by the future Gamma Factory proof-of-principle experiment, could be implemented at CERN with minor infrastructure investments.

© 2020 Elsevier B.V. All rights reserved.

Property	Pb ⁷⁹⁺	Xe ⁵¹⁺	$\mathbf{C}\mathbf{a}^{17}$
Mass Number (A)	208	129	40
Atomic Number (Z)	82	54	20
Charge (e)	79	51	17
Beam intensity(1e8)	1.90	4.20	27.7
Excited Lifetime (ps)	76.6	3	0.43
Transition Energy (eV)	230	492	661
Lorentz factor γ	96	152	205
Laser wavelength (nm)	1031	768	768

(Doppler shift scales with γ)

Laser wavelength + Doppler shift -> Transition energy

Results will only cover cooling with single laser

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁸

Xenon simulations

- Code: laser cooling module was developed in Xsuite (CERN beam dynamics code) [1]
- Excitation: solve Optical Bloch Equations (OBE)
- Emission: particle loses energy based on emission angle

Xenon simulations

- Code: laser cooling module was developed in Xsuite (CERN beam dynamics code) [1]
- Excitation: solve Optical Bloch Equations (OBE)
- Emission: particle loses energy based on emission angle

Longitudinal cooling + horizontal cooling thanks to coupling with dispersion (2.4m)

Optimal transverse cooling

 ϵ_n

$$\int_{=\epsilon_0 e^{-at}} cooling rate = -a$$

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ¹¹

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ¹²

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ¹³

Transverse cooling

 ϵ_n

$$= \epsilon_0 e^{-at}$$

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ¹⁴

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ¹⁵

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ¹⁶

Xenon IBS growth rates

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ¹⁷

Xenon IBS growth rates

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ¹⁸

Xenon equilibrium

Assume cooling rate same everywhere

IBS growth rate = laser cooling

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams - the Xenon case 19

Xenon IBS growth rates

Assume cooling rate same everywhere

cooling IBS $\epsilon_n = \epsilon_0 e^{-at}$ $\epsilon_n = \epsilon_0 e^{bt}$

Equilibrium: IBS growth rate = laser cooling decay rate

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ²⁰

Xenon IBS growth rates

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ²¹

How to circumvent longitudinal constraint?

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ²²

Decrease laser-ion offset to trade transverse cooling for longitudinal cooling

Decrease laser-ion offset to trade transverse cooling for longitudinal cooling

Decrease laser-ion offset to trade transverse cooling for longitudinal cooling

<u>Question</u>: how does Xenon compare to other ions?

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ²⁵

How does Xenon compare to other ions?

<u>Question</u>: How does this compare to IBS growth rates?

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ²⁶

Cooling equilibrium of ions

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ²⁷

Summary and outlook

Summary:

- Developed laser cooling tools in Xsuite
- Used tools to estimate cooling rates of xenon, calcium, and lead
- Compared cooling rates against IBS
- Xenon and calcium show small equilibrium emittances

Outlook:

• Simulate lead cooling of Gamma Factory proof-of-principle experiment.

Thanks for your attention & enjoy the workshop!

References

[1] https://github.com/xsuite/xsuite
[2] Chen, D. Y., Wang, H. B., Wen, W. Q., Yuan, Y. J., Zhang, D. C., Huang, Z. K., Winters, D., Klammes, S., Kiefer, D., Walther, T., Loeser, M., Siebold, M., Schramm, U., Li, J., Tang, M. T., Wu, J. X., Yin, D. Y., Mao, L. J., Yang, J. C., ... Ma, X. (2023). Explanation for the observed wide deceleration range on a coasting ion beam by a CW laser at the storage ring CSRe. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1047, 167852. https://doi.org/10.1016/J.NIMA.2022.167852

[3] Marcis Auzinsh, Dmitry Budker, Simon Rochester. Optically polarized atoms: understanding light-atom interactions, Oxford University Press, 2010.

[4] https://www.edinst.com/second-harmonic-generation-microscopy-with-the-rms1000-confocal-microscope/

Backup

Photon generating mode

Property	Pb ⁷⁹⁺	Xe ³⁹⁺	Ca ¹⁷⁺
Laser Wavelength (nm)	2207.46	1035.17	769.81
Intensity of Ion Beam	1.90×10^{8}	4.20×10^{8}	2.77×10^{9}
Fraction of Excited Particles	16.2%	17.7%	17.7%
Number of Emitted Photons	3.07×10^{7}	7.43×10^{7}	4.92×10^{8}
Maximum Emitted Photon (Kev)	94.91	202.39	272.16

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ³²

dispersive cooling

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ³⁴

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ³⁵

CERN

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ³⁶

cooling of the SPS ion beams – the Xenon case 37

cooling of the SPS ion beams – the Xenon case 38

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ³⁹

Transverse cooling example

Reducing momentum in dispersive region can heat/cool the beam depending on location of momentum reduction

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁴¹

backup

Xenon example

large gamma -> large Doppler shift

0.75 × 0.50 P -0.25 D cumulative1.0 50 count

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams - the Xenon case 43

Parameter	Value
λ - Wavelength ($\hbar \omega$ - Photon energy)	1034 nm (1.2 eV)
σ_{λ}/λ - RMS relative band spread	2×10^{-4}
U - Single pulse energy at IP	5 mJ
Laser waist radius IP ($\sigma_L = w_L/2$)	1.3 mm
θ_L - Collision angle	2.6°

Parameter	Value
β_x, β_y	54.47, 44.40
α_x, α_y	-1.55, 1.32
γ_x, γ_y	0.06, 0.06
D_x, D_y	2.4, 0.0
D_{px}, D_{py}	0.09, 0.0

Second harmonics: Xenon

• smaller laser wavelength

smaller laser pulse energy

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁴⁵

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁴⁶

Lanzhou benchmark

- Solve Optical Bloch Equations (OBE)
- Compare with Lanzhou experiment

<u>Results</u>: Theoretical linewidth = 3.6e-8Observed linewidth = 5.7e-6Xsuite linewidth $\approx 5e-6$

March 25th 2024

Peter Kruyt | Laser cooling of the SPS ion beams – the Xenon case ⁴⁷

